
筑後川水系ダム群連携事業における 環境保全への取り組み

【概要版】

令和7年10月

独立行政法人水資源機構 筑後川上流総合管理所 寺内ダム再生・筑後川水系ダム群連携事業推進室

佐田川の風景(令和7年9月撮影)

~はじめに~

筑後川は、古くから北部九州の広い地域で、社会・経済・文化の基盤を支え、人々の生活に欠かせない水を届けてきた大切な川です。最近では気候の変化により、雨が降らない時期や水不足が起こることが増えています。また、集中豪雨などの極端な天気が多くなっており、川の水を安定して使えるようにすることや、自然環境を守ることが大きな課題になっています。

こうした課題に対応するため、筑後川水系ダム群連携事業では、福岡県朝倉市において 筑後川とその支川である佐田川を導水路でつなぐ施設をつくり、近くにある3つのダム (江川ダム・寺内ダム・小石原川ダム)に筑後川の水を貯め、必要な時に流すことで水の 安定供給を目指しています。

本事業は導水路の建設を目的としたものであり、法令上は環境影響評価法の対象事業には該当しません。しかし、地域環境に広く影響を及ぼす可能性があることから、事業の実施に先立ち、事業者の自主的な判断により環境への影響を把握・評価する取り組みを行うこととしました。

また、事業の進行にあたっては、トンネル工事による地下水位の低下や水質の変化に対する地域の懸念に丁寧かつ誠実に対応するため、令和5年10月に「環境保全委員会」を設置し、これまでの調査結果や保全対策について、約2年間にわたり専門的な検討を重ねてきました。

本事業における環境保全の取り組みをとりまとめた環境レポートとして、『筑後川水系 ダム群連携事業における環境保全への取り組み』を作成しました。あわせて、一般の方々 にも要点をわかりやすくお伝えすることを目的に、本書【概要版】を作成しています。

今後の工事や施設の運用にあたっては、本書で紹介している環境保全への取り組みを確実に実施し、事業の影響を確認しながら、専門家の意見を取り入れて検証を続けていきます。また、その結果についても、一般の方々にもわかりやすくお伝えできるよう、情報公開に努めていきます。

そして、長期的な気候の変化にも対応しながら、将来にわたって安定して水が使えるよう、自然との共生を図りつつ、地域の取り組みと連携して環境保全への取り組みを進めていきます。

江川ダム 寺内ダム 小石原川ダム

委員長からのメッセージ

本書は「筑後川水系ダム群連携事業(以下、ダム群連携事業)における環境保全への取り組み」と題して、いわゆる環境影響評価書に相当する報告書(以下、環境レポート)の「概要版」です。環境レポートは、環境アセスメントの関連法等に準拠した評価手法に基づいて作成されていますので、学術的に貴重なデータが含まれ、科学的知見に基づく分析結果や評価結果が専門的に記載されています。そのため、内容が市民感覚で読みづらいのではという思いから、できるだけ分かり易い表現を用い、そしてメッセージ性を重視してこの「概要版」を作成することになりました。

まず、ダム群連携事業の内容について、簡単に触れておきます。ダム群連携事業は、既存の 寺内ダム、小石原川ダム、江川ダムの3つのダムの空き容量を有効活用し、筑後川の流量に余 裕がある時に貯留し、水量不足になりやすい夏場に筑後川へ戻そうとする事業です。事業の効果を瀬ノ下地点の流量で見積もれば、毎秒 40m³ 未満となる夏場の水不足日数が大幅に改善されると予測されています。瀬ノ下地点での毎秒 40m³ という流量(筑後川の水資源開発基準流量)は、昭和の時代に福岡都市圏を含む北部九州の水資源計画に関連して有明海への影響が懸念され、社会問題となったことを踏まえて関係機関で合意された経緯があります。したがって、ダム群連携事業の環境影響を把握するためには、有明海まで視野に入れる必要があります。しかし、有明海海域環境への影響因子は複雑多岐に渡るためダム群連携事業に焦点を絞った影響 把握は極めて困難です。そこで、筑後川水系ダム群連携事業環境保全委員会(以下、委員会)では筑後大堰湛水域を影響範囲の最下流チェックポイントに設定しました。

委員会では、まず、工事に関する注意事項や環境保全対策について検討し、情報を共有しました。そして事業者による環境保全対策については、計画・設計段階から工事施工を経て供用段階に至るまで、騒音や大気質、水質汚染など環境保全のための規制遵守に加え、動植物等の生態系への影響についても、生き物たちの代弁者である委員の先生方から忌憚のないご意見やご指摘を受け、事業者との情報共有を図りました。とはいえ、生き物たちからの全てのメッセージを理解し伝えることは不可能に近いことですので、生き物たちとの対話も含めて環境保全に関するモニタリングを工事完成後も継続することが必要不可欠です。

以下に、特筆すべき環境保全への取り組みについて、順不同で触れておきます。

まずは、水質に関することです。一般的にダムは流入水を貯留するため富栄養化や濁水長期 化などダム特有の水質変化が生じます。ダム群連携事業の3ダムについては、これまでの水質

保全対策や流域対策によって、近年、深刻な水質障害は発生していないようです。ダム群連携を前提とした水質予測によれば、筑後川本川からの流入水質、特にリン流入の影響、すなわち富栄養化が懸念されましたが、ダム湖内での対策により改善が見込まれるとの予測結果が得られました。一方、筑後川本川の水質については、ダム群連携による導水量が本川流量に対して

少ないことからダム群連携事業そのものによる河川水 質への影響は限定的となります。注意すべき点として、 筑後大堰での藻類増殖が挙げられます。近年、筑後大堰 では時折ですが高濃度のクロロフィルが確認されてい ますが、短期間のデータしか得られていないため原因 究明に至っていないのが現状です。この状況が一時的 なものか長期化するのかについては、今後の観測デー タの蓄積を待つ必要があります。

ダム群連携の特徴的施設である導水路トンネルについては地下水への影響を最小とするためシールド工法が採用されました。導水路トンネルの地下水流動への影響把握については井戸や沢水の水量・水質観測を実施するほか、建設発生土に含まれる自然由来の有害物質についても事後調査と情報公開が求められます。

動植物、生態系の環境保全の取り組みについては、地域特有の重要種や在来種への配慮、外来種移入による生態系への影響評価、対応策など、かなりの時間をかけて意見交換を行いました。ダム群が導水管で連結されるため外来種の侵入・拡散による生態系の攪乱が発生する可能性も否定できません。人為的な生態系への攪乱については可能な限り保全対策を講じなければなりませんが、外来種の監視には従来の観察・採取などの調査方法に加えて環境 DNA 分析の導入も予定されています。

さらに、委員会では「ネイチャーポジティブ(自然再興)」という新しい用語を用いた議論が行われました。ネイチャーポジティブとは、「自然を回復軌道に乗せるため、生物多様性の損失を止め反転させる」(環境省)ことが基本となっています。従来の環境保全対策は、環境への負のダメージを可能な限り少なくするか、ゼロ(元に)に戻すことを目的として対症療法的あるいは短期的視点で対応することが多かったため、課題も残されていました。委員会では、この新しい概念に基づいて環境保全対策の具体案を提案しています。

また、地域社会、特に次世代を担う子供達へ情報を発信したいとの思いから小学生高学年を 対象とした環境教育・学習的素材の冊子を別途作ることを提案しました。

ネイチャーポジティブの概念には、自然の恵みを活かした地域経済の活性化や社会課題の解決に向けた取り組みも含まれていますので、事業地の自治体である朝倉市からの意見と要望を環境レポートに反映させて頂きました。特に同市からは、環境保全に関して事業完成後の事後調査に対する強い要望が寄せられました。このことについては、事業者の丁寧な対応に期待し、併せて「九州地方ダム等管理フォローアップ委員会」(九州地方整備局)にて事後調査データの定期的な公表が実施されることを申し添えます。

最後に、委員会で熱心にご議論いただいた委員の先生方、そして報告書作成に際し忌憚のないご意見を賜りました朝倉市の皆様に心からお礼申し上げます。

総目次

第1部	環境保全への取り組み
第1章	事業の目的及び内容1-1
第2章	環境の現況と環境保全への取り組み計画1-1C
第3章	環境保全への取り組み1-17
第2部	環境影響評価
第1章	環境影響評価の実施内容2-1
第2章	調査・予測及び評価の結果2-8

~本書の内容及び構成について~

本書は、筑後川水系ダム群連携事業の実施に伴う環境影響評価の結果をとりまとめた「筑後川水系ダム群連携事業における環境保全への取り組み」から、地域の皆さまをはじめとした一般の皆さまに特に知っていただきたい内容を選び出して再編集した概要版です。

多くの方に対して、本編の要点を簡潔かつわかりやすくお伝えできるよう、第1部と第 2部に分けた構成にしています。

第1部では、事業を通じて行う環境保全への取り組みの内容を説明しています。環境 影響の回避・低減のための方策にはじまり、生態系の多様性を豊かにするための取り組 みや、近年顕在化しつつある気候変動に対する取り組みなどをまとめています。

第2部では、事業として行った環境影響評価について、実施内容を整理したうえで調査、予測及び評価結果の概要を報告しています。第1部に記載した様々な環境保全のための取り組みは、これらの調査・検討結果を踏まえて立案したものです。

なお、密猟・盗掘・写真撮影等といった人為的要因により動植物の個体や生息・生育環境に悪影響が及ぶことを防ぐため、本書では重要な動植物の生息・生育位置の特定につながる資料の掲載は差し控えています。

第1部 環境保全への取り組み

第1部 環境保全への取り組み

目 次

第 1 章 事業の目的及び内容	1-1
1.1 事業の背景・目的	1-1
1.2 本事業の概要	1-3
1.3 設置する施設と役割・運用	1-4
1.3.1 施設の全体配置	1-4
1.3.2 導水路トンネル	1-5
1.3.3 取水施設	1-6
1.3.4 中継施設	1-7
1.3.5 放流施設	1-7
1.3.6 建設発生土受入地	1-8
1.4 関連事業	1-9
1.4.1 寺内ダム再生事業における環境影響検討	1-9
1.4.2 寺内ダム再生事業について	1-9
第2章 環境の現況と環境保全への取り組み計画	1-10
2.1 環境の現況	1-10
2.1.1 気象、大気質及び水質	1-10
2.1.2 地形・地質及び地下水	1-11
2.1.3 動物、植物及び生態系	1-12
2.1.4 景観・人と自然との触れ合いの場所	1-13
2.2 環境影響評価の実施内容	1-14
2.3 環境調査及び環境保全委員会の開催	1-15
第3章 環境保全への取り組み	1-17
3.1 計画・設計段階における環境保全対策	1-17
3.2 施工・供用段階における環境保全対策	1-18
3.3 地域特有の自然への対応	1-20
3.4 ネイチャーポジティブへの寄与	1-22
3.5 外来種移入への対応	1-24
3.5.1 外来種について	1-24
3.5.2 外来種の現状	1-24
3.5.3 外来種を移入させないための取り組み	1-26
3.5.4 外来種の移入を監視するための取り組み	1-26
3.5.5 外来種を蔓延させないための取り組み	1-26
3.6 今後の環境保全への取り組み	1-27

第1章 事業の目的及び内容

1.1 事業の背景・目的

筑後川は、その源を熊本県阿蘇郡の瀬の本高原に発し、玖珠川を合わせて山間盆地を流下し、その後小石原川、佐田川、巨瀬川及び宝満川等多くの支川を合わせながら、有明海に注ぐ幹川流路延長143km、流域面積2,860km²の九州最大の一級河川です。

筑後川の水は、発電用水や農業用水等で繰り返し利用されており、また、水道用水として、福岡都市圏などへ広域的に供給がされていることから、北部九州における重要な用水供給源となっています。また、筑後川では、急激に増大する水需要に対応するため、都市用水等の開発を流水の正常な機能の維持に優先してきた歴史的な経過があります。

筑後川水系河川整備計画では、福岡県久留米市の瀬ノ下地点において、通年40m³/sの河川流量確保に努めるとされており、夏期(4月~9月)については既存ダムの整備により順次流量の確保がされてきているものの、未だ河川流量が不足しています。

平成6年に代表されるように、近年でも大きな渇水に見舞われており、長期に及ぶ取水制限による社会活動への影響や河川流量の極端な減少による河川環境への影響が発生しており、慢性的な水不足の状態にあることから、このような状態を解消するための対策が必要となっています。

図 1-1 筑後川の水利用模式図

【主な渇水による被害】

田面がひび割れし枯死した稲 (平成6年)

エツの水揚げ 平成 17 年に夏場の瀬ノ下地点流量が 約 12m³/s まで減少し、エツの水揚げが減少

これに対して筑後川では、「筑後川水系河川整備計画」(令和4年9月変更)に基づき、水系内にダムを整備・活用するなどして筑後川の流量を確保するための施策が進められており、河川環境を保全するため瀬ノ下地点で40m³/sを確保することを目標としています。

図 1-2は瀬ノ下地点における季節ごとの流量を表しており、夏期(4月~9月)については既存ダムの整備により順次流量の確保がされてきているものの、未だ河川流量が不足しています。

そこで、「筑後川水系ダム群連携事業」(以下、「本事業」といいます)では、既存の江川ダム、 寺内ダム及び小石原川ダムの空き容量の有効活用を図るため、筑後川と佐田川を結ぶ導水路を建設し、筑後川の水を佐田川へ送ります。送られた水は、必要に応じてダムに貯水・放流され、筑 後川の流量の確保に役立てられます。事業の完成後は、図 1-3のとおり、夏期の水不足が大幅に 解消される見通しです。

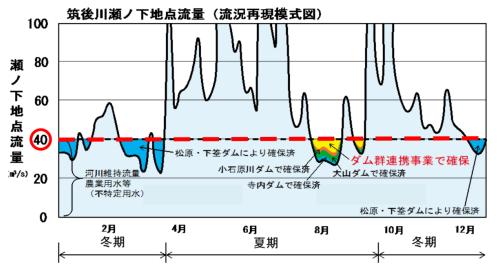


図 1-2 流量の不足量と各事業による確保のイメージ

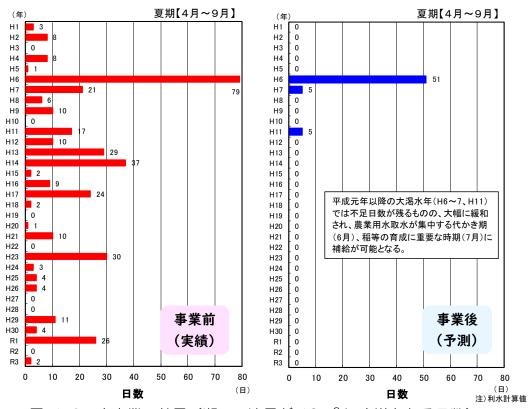


図 1-3 本事業の効果(瀬ノ下流量が 40m³/s 未満となる日数)

1.2 本事業の概要

導水施設の仕組みは図 1-4のとおりです。筑後川の流量が豊富で、かつ既存の三ダム(江川ダム、寺内ダム、小石原川ダム)に空き容量がある場合に、筑後川から支川の佐田川及び小石原川に最大2.0m³/sの水量を導水することで水を蓄え、必要に応じて筑後川本川へ不特定用水を補給することで、筑後川の適正な河川流量を確保します。

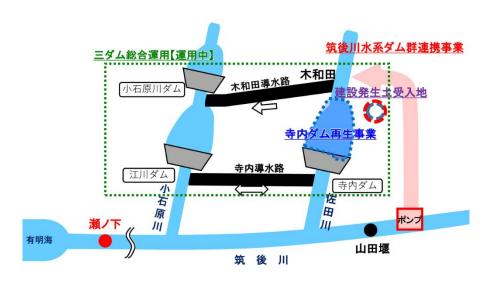


図 1-4 本事業の仕組み

筑後川からの取水は図 1-5のとおり、日々の筑後川の流量変化や既存ダムの空き容量を確認するとともに、既存の水利用等に支障を与えないことを確認した上で行います。取水量は、これらの条件を勘案して決定するため、日あるいは時間単位で変化します。

取水が可能となる日数は気象条件により異なりますが、過去の流況を当てはめると、平均的には年間の半分程度の日数となることが見込まれます。

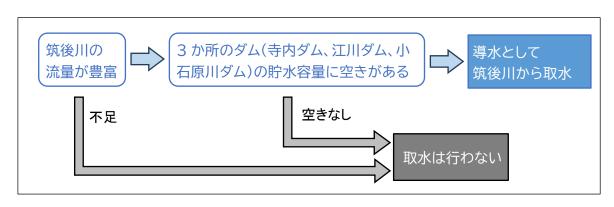


図 1-5 取水の判断パターン

1.3 設置する施設と役割・運用

1.3.1 施設の全体配置

本事業では、筑後川本川(恵蘇宿地区付近)から既設の木和田導水施設上流の佐田川(木和田地区)に水を送るための導水路を設置します。各施設の配置は図 1-6のとおりです。図 1-7は 導水路の断面図を示していますが、取水場所と比べて標高の高い場所に水を送るため、取水施設から中継施設まではポンプによって揚水する「圧送管区間」、中継施設から先は「自然流下区間」 に区別されます。

導水路は地中に敷設するトンネル構造とし、全長は約9.7kmに及びます。恵蘇宿地区から北進し、途中で佐田川左支川の黒川や鳥屋山(標高645.1mの山)の下を通過し、木和田地区に至ります。経路上の恵蘇宿、黒川及び木和田の各地区には、導水に必要な取水施設などの地上施設を設置します。また、事業で発生する建設発生土を埋め立てるための建設発生土受入地を寺内ダム流域内の帝釈寺川上流域に整備します。

図 1-6 各施設の配置

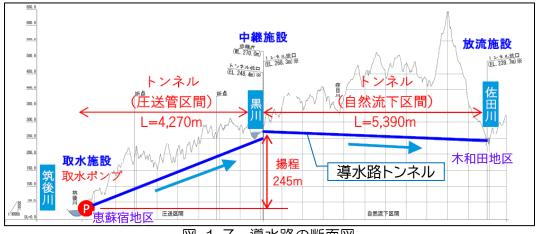


図 1-7 導水路の断面図

1.3.2 導水路トンネル

導水路トンネルは水を送るための水路です。その断面は図 1-8のとおりであり、外径の直径が 3mの円形のトンネル構造となります。築造の工法には地下水への影響を検討した上で、地下水 への影響が最も小さくなる「シールド工法」を採用ました。

シールド工法では、図 1-9に示す「シールドマシン」にて地中掘削を行い、掘削直後に「セグメント」と呼ばれる水密性の高い外壁を作るため、地下水の湧水量を少なくできます。

シールド工法では、発進や到達をする地表部にシールドマシンを動かす設備、セグメント等の 材料や掘削した土砂を仮置くためのスペースなどを確保するため、各施設では施工上必要な面積 も含めて整備を行います。

導水トンネル工事で生じた発生土については、本事業で整備する建設発生土受入地に搬入し、 埋め立てます。

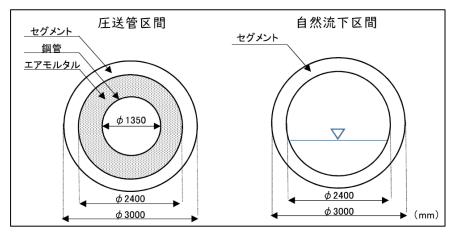


図 1-8 導水路トンネルの断面図

図 1-9 シールドマシン(左)と導水路トンネルの内部(右)の例

1.3.3 取水施設

取水施設は、筑後川本川の水を取水し、標高の高い中継施設に向けて水を送水するための施設です。表 1-1はその概要、図 1-10は完成後のイメージです。

施設は、取水した水に含まれる土砂等を取り除くための沈砂池、約250m高い位置にある中継施設まで水を圧送するためのポンプ場、ポンプ等の施設を動かすための電源を確保するための受変電設備及び鉄塔などにより構成されます。取水樋門は筑後川の右岸側の川岸に設け、取水ポンプ場や沈砂池は国道脇を整地して設置します。

項目	内容	
面積	地形改変面積 約 12,800m ² (1.3ha) 平場面積 約 8,200m ² (0.8ha)	
主な設備	取水樋門、沈砂池、取水ポンプ場、特高変電設備、鉄塔	
取水方式	筑後川本川右岸側からの表層取水	
揚水ポンプ	取水ポンプ場建屋の内部に設置場程 245mポンプの動力は高圧線を通じて受電する電気	
送水量	最大 2m³/s(その時の必要水量によって 0~2m³/s まで変動)	

表 1-1 取水施設の概要

図 1-10 取水施設 (イメージ)

1.3.4 中継施設

中継施設は、圧送管区間と自然流下区間を接続させるための施設です。現在は植林地となって いる場所の樹木を伐採し、整地します。まずトンネルの施工に必要なスペースを整備し、トンネ ル施工完了後に中継施設を設置します。

施設の概要は表 1-2のとおりです。圧送管区間と自然流下区間を接続する中継点として中継 水槽を有しますが、施設のほとんどは地下埋設となります。ポンプなどの大型の機械類は設置し ません。

項目	内容		
面積	地形改変面積 約 4,100m ² (0.4ha) 平場面積 約 2,000m ² (0.2ha)		
主な構造	中継水槽、圧送管 ※大型機器類は設置しない		

表 1-2 中継施設の概要

1.3.5 放流施設

放流施設は、導水路トンネルの終点にあたり、送水してきた水を減勢(水の勢いを弱めること) して佐田川に合流させるための施設です。概要は表 1-3のとおりであり、佐田川の河岸の一部を 整地してコンクリート製の導水路の出口を設置します。図 1-11は完成後のイメージです。

項目	内容	
面積		,700m²(0.3ha) ,400m²(0.2ha)
主な構造	放流管、減勢工 ※大型機器類は設置しない	

表 1-3 放流施設の概要

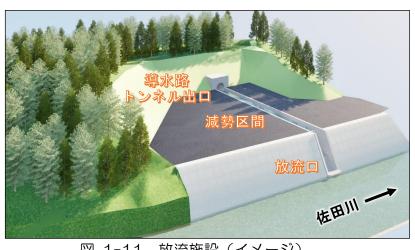


図 1-11 放流施設 (イメージ)

1.3.6 建設発生土受入地

本事業で発生する発生土は、朝倉市が実施する「水源の森整備事業」の基盤整備に用いられます(以降、基盤整備としての土砂埋め立て箇所のことを本事業における「建設発生土受入地」という)。

建設発生土受入地の容量等は表 1-4のとおりです。本事業で発生する導水路トンネルの掘削ずり及び放流施設等の各施設の建設工事で発生する建設発生土と併せて、寺内ダムの日常の管理や再生事業で発生する掘削土砂も埋め立てる予定です。

盛土の安定性を十分に確認するとともに、沢部を埋める構造になるため必要な排水施設を設置する計画です。図 1-12は埋め立て完了後のイメージです。

発生土による基盤整備完了後は、朝倉市が実施する「水源の森整備事業」にて順次緑化し、森林に復元する計画です。

項目	内容	
分類	安定型処分場	
受け入れるものの種類	建設発生土のみ(産業廃棄物は受け入れない)	
面積	約 14ha	
埋め立て容量	合計 約 60 万 m ³ (内訳)本事業 :約 11 万 m ³ 寺内ダム再生事業:約 8 万 m ³ 寺内ダム維持管理:約 40 万 m ³	

表 1-4 建設発生土受入地の概要

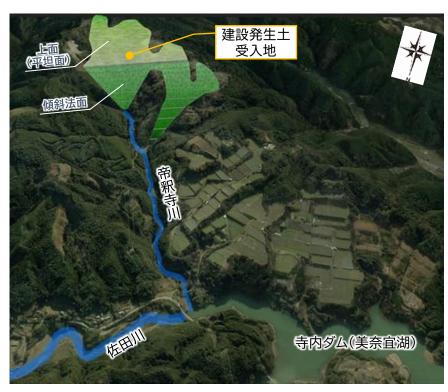


図 1-12 建設発生土受入地(埋め立て完了後のイメージ)

14 関連事業

1.4.1 寺内ダム再生事業における環境影響検討

本事業の関連事業として、寺内ダム再生事業が実施されます。寺内ダム再生事業は、本事業とは独立した治水事業として洪水調節容量の拡大などを行うものであり、事業の実施に伴って佐田川に水質等の影響が及ぶ可能性が考えられます。さらに、寺内ダム再生事業完了の数年後には本事業による影響が再び佐田川に及ぶため、本事業では、寺内ダム再生事業が行われる前から本事業の完成後までの期間を通して環境の変化等を予測し、特に寺内ダム付近及びダムより下流側の佐田川については両事業による累積的な環境影響を検討しました。検討結果の概要は第2部に示しますが、寺内ダム再生事業による環境への影響はいずれの環境要素に対しても小さいと考えられます。

1.4.2 寺内ダム再生事業について

寺内ダム再生事業は、洪水時最高水位の見直し及び容量振替により、現況の洪水調節容量を700万m³から880万m³に増大させるとともに、洪水調節容量の増大に伴い非常用洪水吐きの改造を行うことで、治水機能の向上を図るものです。現況の状態から寺内ダム再生事業の段階を経てダム群連携事業が完成するまでの利水容量や洪水調節容量の推移は図 1-13のとおりです。

事業の実施により、平成29年7月九州北部豪雨と同規模の洪水に対して、被害の防止又は軽減を図ります。

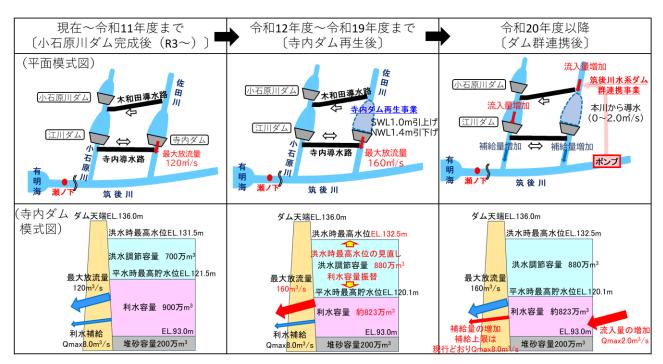


図 1-13 寺内ダム再生事業の概要(現況からダム群連携事業までの流れ)

第2章 環境の現況と環境保全への取り組み計画

2.1 環境の現況

本事業の予定地及びその周囲は、筑後川中流部右岸側の丘陵地及び山地に属します。本事業に対する環境影響検討の基礎資料として、これらの地域における大気環境、水環境あるいは動物・植物等の各環境要素に関わる現況を整理しました。

2.1.1 気象、大気質及び水質等

気象、大気質及び水質等に関わる項目の整理結果は表 2-1のとおりです。比較的降水量が多い地域であり、河川や湖沼の水質は一部の地点で環境基準に不適合となっています。

項目	特徴	
気象	地域としてみると、年間降水量は概ね 1,800mm を超え、降水量の多い地域と言える。山地ではさらに多くなるところもある。	
大気質	二酸化硫黄、二酸化窒素及び浮遊粒子状物質は環境基準をほぼ達成する。	
騒音・振動	表動 一般国道 386 号線などで騒音が昼間の環境基準に不適合な区間がある。	
水質	【河川】筑後川の流量は、時期によって大きく変動する。取水施設計画地の上流にある荒瀬では、月別の平均流量が約30~400m³/s の範囲となる。小石原川の高成橋、佐田川の佐田川橋等、支川では地点によっては生活環境の環境基準を満たさない場合があるものの、筑後川本川は環境基準に適合する。健康項目に関してはすべての調査地点で適合する。【ダム湖】寺内ダムではDO、SS、全燐が環境基準を超過するが、その他の項目及び健康項目は環境基準に適合する。	

表 2-1 気象、大気質及び水質等の状況

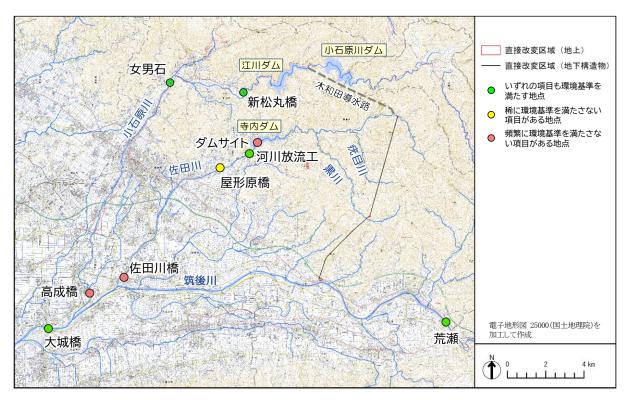
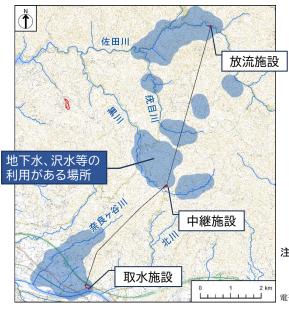


図 2-1 河川の位置及び水質環境基準の適合状況

2.1.2 地形・地質及び地下水

地形・地質及び地下水に関わる項目の整理結果は表 2-2のとおりです。これまでの地質調査の結果から、事業計画地の地質は様々な種類の地層が複雑に分布しており、さらに水を通しやすい層も多数確認されています。


表 2-2 地形・地質及び地下水の状況

項目	特徴	
地形•地質	事業計画地及びその付近には重要な地形・地質は存在しない。結晶片岩、花崗閃緑岩及び火山岩類が複雑に分布する。黒川〜疣目川周辺の結晶片岩は破砕部を多く含み、鳥屋山の下方には火山砕屑岩層がある。これらの地層は透水性が高い特徴を有する。	
地下水	川や沢沿いの低地では多くの井戸が設置され、飲用や生活用水、あるいは農業用水として利用されている。	

図 2-2 表層地質図

電子地形図 25000 (国土地理院)を加工して作成

注)水利用のある場所については個 人情報保護の観点からおおよそ の範囲を図示しています。

電子地形図 25000 (国土地理院)を加工して作成

図 2-3 水利用の状況

2.1.3 動物・植物及び生態系

動物・植物及び生態系に関わる項目の整理結果は表 2-3のとおりです。事業計画地の周辺はスギ・ヒノキ植林が広く分布しており、多様な動植物が生息・生育しています。

表 2-3 動物・植物及び生態系の状況

項目	特徴		
陸域	 ・陸域の植生は、常緑広葉樹林、落葉広葉樹林等をパッチ状に含むスギ・ヒノキ植林が分布している。 ・事業計画地周辺の陸域においては、アカネズミ、タヌキ、キツネ、クマタカ、アオバト、シジュウカラ、アカハライモリ、カジカガエル、ニホントカゲ、ヤマカガシ、ヒグラシ、ミヤマセセリ、カブトムシ、ノコギリクワガタ、ヤマタニシ、キュウシュウゴマガイなどの動物、スギ、コナラ、クヌギ、ヒサカキ、シロダモ、フモトシダ、シケチシダ、サンヨウアオイ、ハシカグサ、ヤブコウジなどの植物のように多くの動植物が確認されている。 		
河川域	・河川環境を動植物の生息・生育環境の視点から分類すると、「筑後川中流域」、 「平野を流れる川」、「渓流的な川」、「貯水池」の4つに区分される。		

図 2-4 代表的な種の写真

図 2-5 代表的な環境

2.1.4 景観・人と自然との触れ合いの場所

事業計画地と重なる眺望点、景観資源や人と自然との触れ合いの場はありません。

事業計画地の周辺又は河川の下流側までを広くみると、世界かんがい施設遺産に登録されている山田堰、水神社や恵蘇八幡など歴史的な建築物も多く、地域の観光資源が点在しています。また、河川公園などのいわゆる親水空間があり、これらの場所は景観の眺望点や人と自然との触れ合いの活動の場に位置づけられます。

2.2 環境影響評価の実施内容

本事業は導水路の建設事業であるため、環境影響評価法や福岡県環境影響評価条例で定められた環境影響評価は必要ありません。しかしながら、事業を実施すれば周辺の生活環境や自然環境に影響が及ぶおそれを考慮し、事業者による自主的な環境影響評価を実施しました。

図 2-6は本事業で行う行為と、その行為によって影響を受ける環境要素の関連(インパクトレスポンス)を示しています。例えば取水施設等の工事を行うと、水環境や大気環境等に影響が及び、さらに水環境が変化することによって動物の生息場所や人と自然との触れ合いの活動の場にも影響が及ぶおそれがあります。こうした考え方に基づいて、環境影響評価の対象項目を選定しました。環境影響評価の詳しい実施内容は第2部に記載しています。

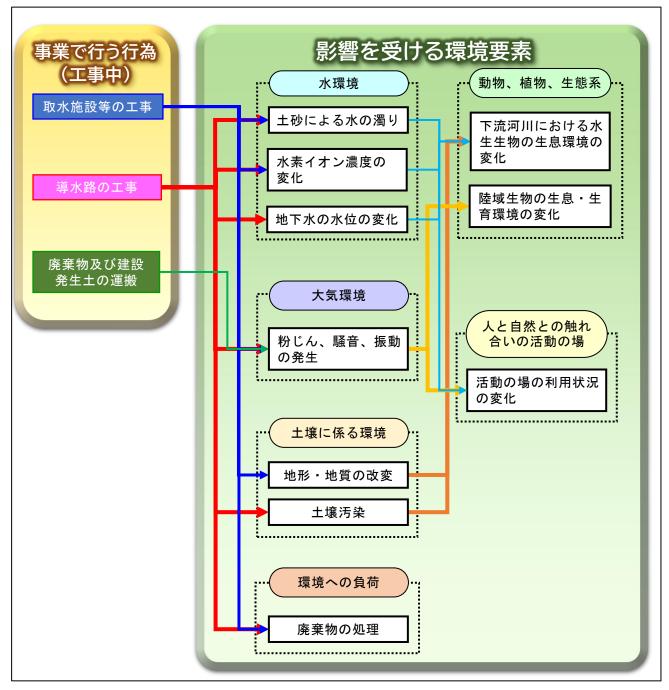


図 2-6 (1) 工事の実施におけるインパクトレスポンス

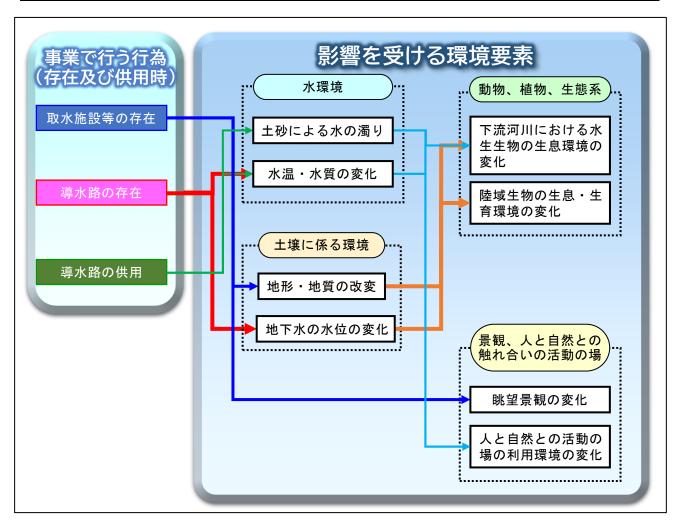


図 2-6(2) 土地又は工作物の存在及び供用におけるインパクトレスポンス

2.3 環境調査及び環境保全委員会の開催

本事業の環境影響評価にあたっては、事業計画が具体化する前の平成24年度から環境調査に 着手し、事業実施前の現況の把握に努めてきました。特に、河川水質及び流量、地下水の水位、 生態系については数年間にわたって調査を続けており、また、今後も継続する予定です。

令和5年度からは、地域に詳しい学識経験者ら10名で構成する「筑後川水系ダム群連携事業環境保全委員会」 (以下、「委員会」といいます)を組織・運営し、水環境や生物多様性の維持、あるいは良好な地域社会の構築の観点からの助言を集め、その後の環境影響検討に活用しました。

表 2-4は委員会で得られた助言等の内容です。環境影響評価の結果に対する指摘や助言のほか、外来種の移入対策、ネイチャーポジティブ方策などについての助言がありました。

委員会の様子(第3回委員会)

表 2-4 環境保全委員会における主な助言等

分野	助言等の内容
全般	取水地点から下流域での筑後川本川に対する環境影響の確認が必要
	ネイチャーポジティブや気候変動適応策を考慮した施設設計が望ましい
	ネイチャーポジティブの概念図は事業地の現状や将来像を勘案して本委員会が 監修した図を掲載する
水質	工事着手前の段階からの佐田川における流量及び河川水温の連続把握が必要
	温暖化に起因する予測結果を超えた水温上昇の可能性に留意する
地下水	黒川及び疣目川における河川流量の観測が必要
	全区間をシールド工法とすることは、地下水位への影響低減の観点から有効
	トンネル工事中の湧水は自然由来重金属のモニタリングが必要
動物•植物•	佐田川に侵入する外来種の予測及び分布拡大リスク、対応フローの検討が必要
生態系	佐田川上流における生態系の変化モニタリングが必要
	寺内ダム下流では植物プランクトン量の変化の検討が必要
	放流施設の下流では水温の上昇によるヤマメやアユ、一部の水生昆虫類に対する影響に留意する
	魚類の好適水温について、各魚種の生息地点とその地点の水温に着目した整理 が必要
	水温変化は非常に重要な課題であり、水質予測結果、トンネルの地熱による水温 変化のデータ及びモニタリングによる監視の必要性について記載するとよい
調査・検討 事項等の周 知・広報	小石原川及び佐田川は、筑後川水系の中でも生物多様性に重要な河川であるため、ネイチャーポジティブの観点からダムができる前の状況も勘案し、回復の目標を理解しやすい内容にするとよい
	環境レポートとして公表する資料は、本編及び概要版とする
	小学校高学年を対象に想定した冊子を作成する

第3章 環境保全への取り組み

3.1 計画・設計段階における環境保全対策

本事業では、設計段階から環境保全のための取り組みを行っています。設計段階で採用した代表的な取り組みの内容と効果は表 3-1のとおりです。特に設計の初期段階では、環境負荷低減の観点から工事の規模や使用材料の量を極力小さくすることを念頭に置きました。さらに各施設の設置位置・範囲の選定においては、既存住居の住環境や生物の生息・生育場の保全の観点を重視しました。

表 3-1 計画・設計段階における環境保全対策

No.	保全対象 の分野	環境保全対策	効果
1	大気質、騒音、振動	地上施設の設置場所は既存住居との 離隔距離が確保できる場所を選定し ます。	工事中を含めて周辺の住居に届く騒音・振動等の影響を低減します。
2	大気質、騒音、振動、 廃棄物等	導水路はできる限り最短距離を結ぶ トンネル構造を採用し、トンネル径 は極力小さいものにします。	地下部を含む改変範囲を最小限にでき、さらに工事期間、建設発生土の発生量や運搬量を少なくします。
3	醫音	ポンプ場建屋の外壁は厚さ 1m のコンクリート製とし、近接住居のある側の壁面には開口部は設けません。	ポンプの稼動による騒音を遮蔽し、近 接住居に対する騒音を大幅に減少さ せます。
4	地下水の水位	導水路トンネルの築造には全区間シ ールド工法を採用します。	トンネル内湧水による地下水位の低下や地盤沈下の発生を防止します。
5	動物、植物、生態系	地上施設の設置場所には畑地や植林 地などの自然度の低い場所を選定す るとともに、機能を集約させて設置 場所数を最小限にします。	生物の生息・生育ポテンシャルの高い 場所の消失を低減します。
6	動物、植物、生態系及び景観	施設等の敷地には地域性系統の植物を用いた緑地をできる限り確保します。	昆虫などの小動物の生息環境を創出するとともに、眺望景観における人工物の印象を緩和します。
7	景観	施設の設置場所は人目に触れにくい場所とし、周辺環境との調和を図りながら、構造物の規模を可能な限り小さくします。	眺望景観における周囲との違和感を 少なくします。

3.2 施工・供用段階における環境保全対策

施工段階とその後の供用段階で採用した代表的な取り組みの内容と効果は表 3-2及び表 3-3 のとおりです。施工段階では、特に建設機械等の稼動に伴う騒音の発生抑制に努めるとともに、一度深刻な影響が及ぶと回復が容易ではない動物・植物に対する影響の回避・低減に細心の注意を払いました。供用段階では、導水路が長期にわたって供用されること踏まえ、下流河川の水質の維持・改善や生態系の保全及び回復を重視しました。

表 3-2 施工段階における環境保全対策

No.	保全対象 の分野	取り組み	効果
1		工事には低騒音・低振動型建設機械 を使用します。	
2	大気質、	未舗装の施工場所には散水やタイ ヤ洗浄を行います。	施工や資機材の運搬に伴う粉じん、騒
3	騒音、振動	防音効果のある仮囲いを活用しま す。	音及び振動の発生を抑制します。
4		作業場所、作業時間、作業期間の集 中を避け、平準化します。	
5	水質	造成中の施工場所の排水経路には 沈砂池を設置します。	濁水の流出を防止します。
6	地下水の水位、土壌汚染	トンネル掘削時の湧水及び掘削ズ リ中の重金属のモニタリングを行 います。	トンネル掘削に伴う重金属含有ズリ 等への適切な対応を行います。
7		クビボソコガシラミズムシの生息 環境を再生します。	クビボソコガシラミズムシの生息環 境となる水際植生について、施工後の 植生の早期回復を図ります。
8		希少猛禽類の生息状況をモニタリ ングします。	工事は、希少猛禽類に影響がないか確 認しながら行います。
9		低騒音・低振動型建設機械の使用、 低騒音、低振動の工法等を採用しま す。	工事中の騒音・振動による動物への影響を低減します。
10	動物、植物、 生態系	夜間作業には生物に配慮した照明 器具を採用し、照明が外部に漏れな いように工夫します。	工事場所への陸上昆虫類等の誘引を 低減します。
11		施工場所以外の立ち入りを避けま す。	工事場所の近くに生育する重要な植 物の踏み荒らしを回避します。
12		工事車両のタイヤの洗浄、河川工事 後には作業員の長靴の消毒を行い ます。	外来種(植物のタネ、外来珪藻等)の 持ち込み・持ち出しを防止します。
13		造成した施設周辺には植物の在来 種を採用して緑化に努めます。	地域性系統を考慮した緑化により、植 物の外来種の侵入を防止します。

表 3-3 供用段階における環境保全対策

No.	保全対象 の分野	取り組み	効果	
1	大気質、 騒音、振動	揚水ポンプの動力には外部から引 き込んだ高圧電源を使用します。	エンジン駆動と比較すると、排ガスは発 生せず、騒音を大幅に抑制できます。	
2		導水元となる筑後川の濁度を常時 監視し、濁度が高い場合は導水を 停止します。	佐田川への濁水の導水を停止し、水質悪 化を防止します。	
3	水質	放流先の水質・水温をモニタリン グします。	佐田川の環境変化を監視し、異常がみ られた場合には直ちに原因の解明と対 策に努めます。	
4		江川ダムに既設の曝気装置(1基) の運用を変更するとともに、曝気 装置を1基追加します。	江川ダムにおいて水が良く混ざるよう になり、植物プランクトンの増殖を抑 え、水質の悪化を防ぎます。	
5	地下水の 水位	導水路トンネル上方にある井戸の 水位を常時監視します。	異常を早期に把握し、原因の解明と対 策に努めます。	
6	動物、植物、	導水路の取水口に柵を設置すると ともに、迷入防止装置を設置しま す。	導水路への水生生物の迷入を防ぎ、筑 後川の水生生物を他の河川に移動させ ないことで河川の生態系の攪乱を低減 します。	
7	生態系	魚類、底生動物、付着藻類等について、重要な種や外来種を含め、 モニタリング調査を行い、生息・ 生育状況の把握に努めます。	過去の調査結果と比較することで、長期的な影響を把握することができます。	
8	景観、人と自然との触れ合いの場所 取水施設の景観については、地元行政や地元住民からの意見を参考に周辺環境に馴染んだ色彩などを採用します。		山田堰など周辺の観光資源との調和が とれ、周辺利用者の眺望的な違和感を 軽減することができます。	

3.3 地域特有の自然への対応

本事業の実施にあたっては、地元自治体である朝倉市から環境影響に関する懸念が寄せられています。本事業では、それらの内容を精査したうえで、懸念事項が将来顕在化することのないように様々な対策を講じることとしており、その内容は表 3-4のとおりです。

表 3-4(1) 朝倉市の抱く懸念事項への対応

No.	懸念	対策
1	(前段) 朝倉市は、九州一の大河筑後川とその支流の水に恵まれた緑豊かなまちです。 朝倉市の面積の半分以上を占める山林に育まれた豊富な水を福岡都市圏をはじめ北部九州等に供給し、水源地としての役割を果たすため、これまで各事業に協力し続けてきました。朝倉市の山間部を源流とする水の流れは、貴重な地域資源であり、市民の暮らしに多大な川、そして有明海へと流れ、朝倉市内にとが、窓域に豊かな恵みをもたらすものです。 気後川水系ダム群連携事業の受入れについては、佐田川および小石原川の河川環境については、次に掲げる懸念がありますが、認識の下に苦渋の決断をしました。 事業の実施にあたっては、次に掲げる懸念事項について十分配慮するとともに、丁寧な対応を望みます。	佐田川、小石原川流域一帯の豊かな自 然環境と、それらと共生しながら続いて きた人々の生活や産業への理解を一層深 め、本事業の計画を検討してまいります。 地元のご懸念事項に対しては、科学的 な知見に基づく十分なご説明と、必要な 環境保全対策等を計画・実施してまいり ます。
2	(河川の水質) 事業により取水した筑後川の水と、佐田川や 小石原川の水が混ざって、全く変化がないとは 考えられません。水質だけではなくて、水温が 上がることによって魚、生物にどのような影響 が及ぶのか、生態系全体として何らかの変化が あるのか等河川環境の変化について危惧して います。	水質や水温の変化に伴う水生生物への影響については、水質及び水温の変化による水生生物への影響は小さい、又は限定的であり、環境類型区分全体の生息環境は維持されると考えられます。(詳しくは第2部2.6 生態系に記載)ただし、水質の予測には不確実性が含まれることから、工事中及び供用後を通じてモニタリング調査を行い、事業による影響を十分に把握すると共に、必要に応じて対策を検討します。
3	(地下水の水位) 近年、トンネル工事に伴う地下水位の低下が全国的に多々発生しているため、特に心配をしています。 地下水は、地域住民の生命活動および産業活動に不可欠なかけがえのない資源です。トンネル工事によって、河川部や渓流部で水涸れ等の影響を受けるのではないかと危惧しています。	本事業では、事前の地質調査等の結果を踏まえ、掘削面からの湧水の少ない「シールド工法」を全区間で採用することとしています。事前の解析の結果によれば地下水位の低下はわずかです。ただし、地下水の予測には不確実性が含まれることから、工事中及び供用後を通じてモニタリング調査を行い、事業による影響を十分に把握すると共に、必要に応じて対策を検討します。

(次ページに続く)

表 3-4(2) 朝倉市の抱く懸念事項への対応

No.	懸念	対策
4	(建設発生土中の重金属) ダム群連携事業の事業地域は自然由来によるヒ素を含む土壌が分布する地域であり、トンネル工事で掘り出されたヒ素を含んだ掘削土の受け入れ先も朝倉市であり、河川や地下水への溶出について懸念しています。	本事業地の特性として、地層によっては自然由来の重金属を含有していることは把握しています。これらのいわゆる土壌汚染に対しては「土壌汚染対策法」を始めとして建設工事における対策方法が示されており、本事業ではそれらの方法を遵守します。
5	(ダム群連携事業の運用と景観) 既設三ダムの運用により、寺内ダム貯水池の 水位は以前に比べ、非常に低い状況が多々見受 けられます。利水の運用としては、効率的かつ 便利であり、それがダムの目的ではあります が、景観に非常に悪い印象を与えています。 ダム群連携事業(筑後川本川からの導水)に よりダムの貯水位は現況より回復する計画で はありますが、実運用は未定であり、ダム群連 携事業完成後の実運用によりどのような状況 になるのか、不明な点が多く不安を感じていま す。	実運用の詳細については今後検討しますが、水質予測結果にもあるように、寺内ダムの貯水位は現状と比べて回復する見込みです。 実運用の決定にあたっては、必要に応じて説明会を行うなど、不安を払拭できるような対応に努めます。
6	(モニタリングと公表) これらの懸念事項について、事業完了後も長い期間モニタリングを実施することが重要であり、結果について市民にも分かるような形にして公表されることを希望します。	工事中及び供用後を通じて、水質、地下水の水位及び水生生物に関する事業影響のモニタリング調査を行います。その結果は、その後の保全対策に向けた助言を仰ぐため、学識経験者で構成する委員会に報告します。また、一連の調査結果や委員会の開催内容は、インターネット等を通じて定期的に公開します。
7	(事業者の責任) モニタリングにおいて環境変化が確認された場合、その責任は事業者にあるものとして、 適切に対応されたい。	モニタリング調査結果を取りまとめ、 定期的に学識経験者で構成する委員会に 報告します。また、一連の調査結果や委員 会の開催内容は、インターネット等を通 じて定期的に公開します。 環境変化が生じた場合の対応について も、責任を持って適切に対応します。

3.4 ネイチャーポジティブへの寄与

「ネイチャーポジティブ」とは、日本語訳で「自然再興」といい、「自然を回復軌道に乗せるため、生物多様性の損失を止め、反転させる」ことを指します(環境省ホームページより引用)。その考え方は図 3-1のとおりです。

我が国においては、閣議決定に基づいて「J-GBF(2030生物多様性枠組実現日本会議)ネイチャーポジティブ宣言」を掲げ、企業や団体の協力を呼び掛けています。図 3-2はその実現に向けた5つの基本戦略です。

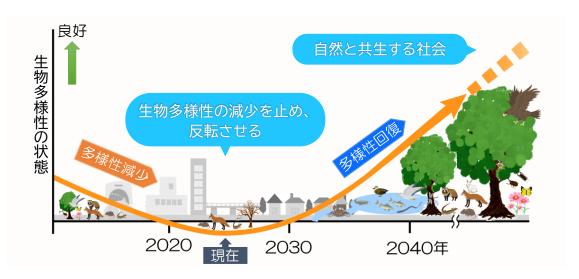


図 3-1 ネイチャーポジティブの考え方

「生きている地球レポート 2022」(WWF ジャパン)、「ネイチャーポジティブポータル」(環境省)を参考に作成

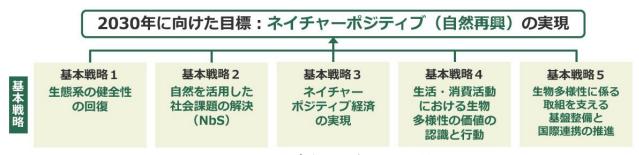


図 3-2 ネイチャーポジティブ 5つの基本戦略

出典: 2030 生物多様性枠組実現日本会議(J-GBF)ホームページ「ネイチャーポジティブ宣言の呼びかけ」

本事業においても、こうしたネイチャーポジティブの実現に寄与するために、事業の設計段階から供用段階までを通じて様々な取り組みを行います。その取り組みの内容を以下に紹介します。

① 地域性系統を考慮した在来種を利用した植生回復等

【図 3-2 基本戦略1に該当】

取水施設等の建設に伴い一部の緑地が消失するため、地域性系統を考慮した緑化を行います。これにより、植物の外来種の侵入を防止しながら地域特有の生態系の保全を図り、動物の生息環境をより良好なものすることを目指します。また、工事箇所の出入りにおいてはタイヤの洗浄等を行うことにより、外来珪藻の拡散防止対策に努めます。

② 地形改変箇所における生物多様性の保全・創出

【図 3-2 基本戦略1に該当】

取水樋門が計画されている河岸は、水際植生が分布する流れの緩い水辺になっており、重要な種に指定されているクビボソコガシラミズムシ(水生昆虫)をはじめ様々な生物が確認されています。工事の実施に伴い、その水辺の一部が消失するため、その水辺環境を再生します。

供用後も水際植生が分布する流れの緩い環境を創出することにより、クビボソコガシラミズム シをはじめとした水生昆虫や底生動物、魚類等の多様な生物の生息環境として生物多様性が豊か な場を作ります。

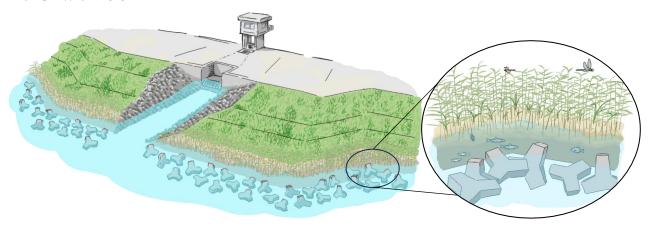


図 3-3 水際植生の保全・創出のイメージ

③ 建設発生土受入地跡地を活用した環境教育(朝倉市との連携)

【図 3-2 基本戦略4に該当】

建設発生土受入地は、埋め立て後は朝倉市の「水源の森整備事業」により植林を行ったのち造成森林として一般に開放する計画です。朝倉市と連携し、この場所を主に子供向けのW環境教育の場として活用することで、地域特有の自然への理解を深め、土木事業における環境保全への取り組みの事例を体感して頂くことを目指します。

④ 環境レポート概要版、冊子を活用した環境教育

【図 3-2 基本戦略4に該当】

本事業では、事前の調査・影響検討結果を踏まえて地域の環境を保全するための様々な方策を 実施しますが、これらの内容を「筑後川水系ダム群連携事業における環境保全への取り組み【概要版】」(本書)に取りまとめ、どなたでも閲覧できるよう公開します。また、小学生を対象として、地域に生息し事業の影響を受けると考えられる代表的な動物・植物の生態や保全対策を記載した「冊子」を作成します。これらが地域の皆様の環境保全に向けた動きのきっかけや参考事例になれば幸いです。

3.5 外来種移入への対応

3.5.1 外来種について

外来種とは、意図的・非意図的を問わず人為的に、過去あるいは現在の自然分布域外へ持ち込まれた生物です。このうち、日本に自然分布域がなく、国外から持ち込まれた生物を国外外来種といいます。また日本の在来種であるが、その自然分布域を超えて国内の他地域に持ち込まれた生物を国内外来種といいます。特に侵略性が危惧される外来種(特定外来生物による生態系等に係る被害の防止に関する法律で指定される種、生態系被害防止外来種リスト、福岡県侵略的外来種リスト掲載種、など)は、人の営み、自然環境などへの様々な影響が懸念されます。

① 生態系への影響

外来種が侵入すると、もともとその場所で生活していた在来種を追い出す、在来種の食べ物を 奪う、在来種を捕食する等により、その地域の生態系に影響を与えてしまうおそれがあります。 また、在来種と外来種が交雑することで、遺伝的攪乱が生じるおそれがあります。

② 人の生命・身体への影響

外来種が毒をもっていたり、かみついたりすることで人にケガをさせる、外来種の植物の花粉を吸いこむことでアレルギーを引き起こすなどの健康被害を生じさせます。

③ 農林水産業への影響

外来種の中には、畑を荒らしたり、漁業の対象となる生物を捕食したり、危害を加えたりする ものがいます。

3.5.2 外来種の現状

導水施設の運用に伴い、筑後川の河川水を取水して佐田川に放流することによって、佐田川に は元々生息していない生物が迷入する可能性が考えられます。また、放流先の佐田川から既設の 木和田導水施設を通じて小石原川にも移入する可能性があります。

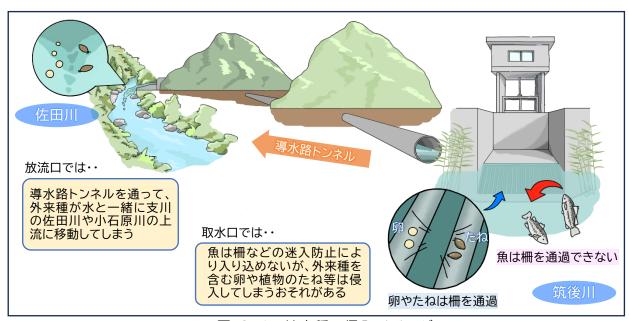


図 3-4 外来種の侵入イメージ

本事業の調査範囲のうち、筑後川、佐田川及び小石原川の3河川において、現地調査等で得られた知見をもとに動植物(鳥類除く)を整理すると、223種におよぶ多くの外来種が確認されています。ほとんどの外来種は、筑後川本川と佐田川もしくは小石原川に共通して生息・生育しています。確認されている外来種は、すべて侵略的な生物とは言えませんが、中には特定外来生物に指定されているブルーギル、ウシガエルなどの動物、オオフサモ、ブラジルチドメグサなどの植物もみられています。

また、筑後川の取水施設周辺で確認されている侵略性が危惧される外来種で、導水によって筑後川から佐田川や小石原川に新たに移入する可能性のある種もわずかに確認されています。移入する可能性のある種は、魚類のギギ、植物のメリケンガヤツリ、付着藻類のミズワタクチビルケイソウ等です。植物や付着藻類は国外外来種ですが、ギギは国内外来種に該当します。ギギが移入・生息するようになると、同様な餌資源や繁殖場所に依存するアリアケギバチ(環境省レッドリストⅡ類)等の在来の魚類に大きな影響を及ぼすおそれがあります。また、ミズワタクチビルケイソウが移入して早瀬等にミズワタ状に群生するようになると、アユやその他水生生物の生息に影響を及ぼすおそれがあります。このほか、もともと佐田川や小石原川ですでに確認されている外来種であっても、筑後川の河川水を通じて移入して繁殖を促すようなことも危惧されます。

図 3-5 国内外来種(ギギ)と影響を受ける在来種(アリアケギバチ)

<u>外来珪藻が分布</u>する河床

図 3-6 外来珪藻(ミズワタクチビルケイソウ)と外来珪藻の繁茂する河床

3.5.3 外来種を移入させないための取り組み

外来種の移入は、人の営みや自然環境の悪化を招くおそれがあるため、本事業の実施にあたり、 外来種を移入させないための取り組みが重要となります。本事業で行う取り組みは以下のとおり です。物理的なハード対策のほかに細やかなソフト対策にも取り組みます。

- 筑後川の取水口に柵・迷入防止装置を設置して、外来種の迷入を防止します。
- 工事中は、工事場所の出入り時に工事車両のタイヤの洗浄を行い、植物の外来種のタネを移動させないようにします。
- 河川周辺での作業後には、作業員の長靴等を消毒して付着している可能性のある外来珪藻 を殺藻します。

3.5.4 外来種の移入を監視するための取り組み

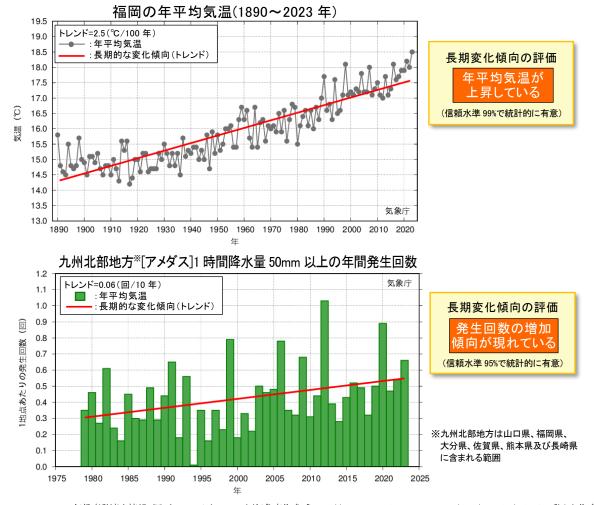
「3.4.3 外来種を移入させないための取り組み」によって、外来種の移入を積極的に防止していきますが、導水と一緒に流れてくる小さな外来種(稚魚、タネなど)の移入を完全に防ぐことは難しいと考えられます。

そこで、工事中や導水施設の運用時は、外来種の生息・生育状況を監視するためにモニタリングを実施します。モニタリングは、放流施設下流の佐田川や木和田導水路下流の小石原川等において、外来種の確認に適した時期に目視観察・捕獲調査等に加えて環境DNA調査も併用しながら行います。

3.5.5 外来種を蔓延させないための取り組み

外来種のモニタリングの結果、本事業によって侵略性が危惧される外来種が移入し、佐田川や 小石原川に生息・生育していることが確認された場合には、外来種による影響を極力抑制するた めの対応が必要になります。モニタリング時には積極的な駆除(捕獲等)を行うとともに、今後 も外来種の動向や新しい知見を収集しながら効果的な取り組みを検討していきます。

このような外来種に関する、「移入防止」、「監視」及び「定着防止」の一連の対策を進めることによって、本事業の外来種の影響の回避・低減に努めていきます。


3.6 今後の環境保全への取り組み

近年は、地球温暖化の進行がますます早まっていると言われています。温暖化が進むと、気温が上昇するだけでなく、酷暑や豪雨、少雨などの極端な気象現象の発生頻度が増え、災害の程度 も大きくなります。さらに、その環境下で生息・生育する動物や植物への影響も避けられません。

そうした地球温暖化や気候変動の影響は、事業地のある九州北部でも認められています。図3-7によれば、気温は上昇傾向が続き、1時間降水量が50mm以上となった回数も年による増減はあるものの全体としては増加傾向にあります。

こうした事実を踏まえ、本事業では、長期的な視点での環境保全への取り組みも続けていきます。それらの取り組みは表 3-5のとおりであり、激甚化する豪雨災害等への備えを強固なものにするとともに、事業活動を通じて地球温暖化防止、地域の生活環境の保全及び生態系の多様性維持に貢献したいと考えています。今後、事業計画の詳細を検討していく過程で、これらの方策の具体的な取り組みを策定していきます。

策定にあたっては、「筑後川水系水資源開発基本計画」及び事業地の地元自治体である朝倉市が定める「第2次朝倉市環境基本計画」(令和7年2月最終改定)などの地域の諸計画との整合を図りながら進めていきます。図 3-8は「第2次朝倉市環境基本計画」に示された「取り組みの体系」ですが、本事業が行う取り組みと合致する項目も多くあります。このような地域が目指す将来像の実現に向けて、関係各所と調整を図りながら進めてまいります。

気候変動適応情報プラットフォーム(A-PLAT) (気象庁作成,[https://adaptation-platform.nies.go.jp/data/jma-obs/index.html])から作成

図 3-7 気温及び降水量の長期的変化傾向

表 3-5 長期的な取り組み

No.	取り組み内容	備考
1	自然環境の保全	施設の維持・管理にあたっては、環境モニタリングや周辺河川の 環境改善に努めます。また、地域社会の一員として、地域の環境保 全活動にも積極的に参加します。
2	水質保全	導水路やダム貯水池の水質を監視し、濁水やアオコの発生を抑えるための適切な対策を講じます。水質異常が発生した場合には、影響を最小限に抑えるための対策を実施します。 さらに、地球温暖化や気象変動の影響を考慮し、必要に応じて対応策の見直しも行います。
3	地球温暖化対策• 環境負荷低減	維持管理における省エネルギーの推進に加え、ダムの発電機能や 小水力発電など、再生可能エネルギーの活用を進めます。
4	生物多様性の保全・ 創出	事業地を活用して、生物の生息・生育環境を保全します。在来種 の植物を用いた植栽や、水生植物が育ちやすい浅瀬や湿地の創出 など、多様な生態系の維持に努めます。
5	環境教育の推進	事業を通じて啓発資料を発行し、環境教育の機会を積極的に設け ます。

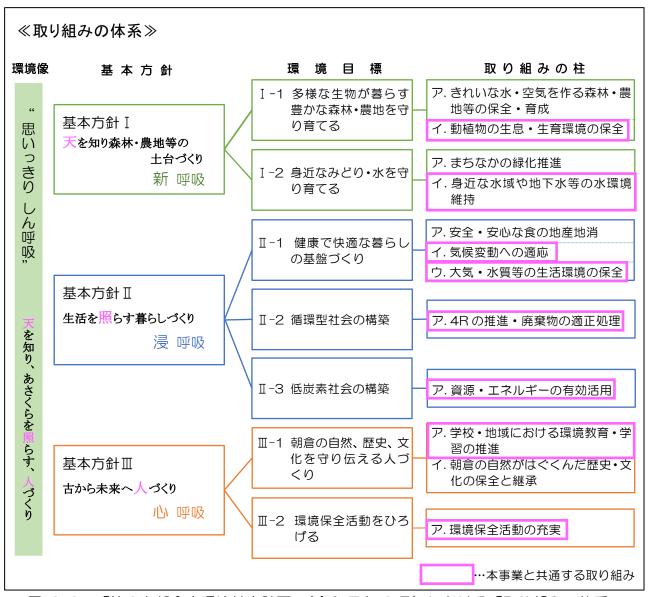


図 3-8 「第2次朝倉市環境基本計画」(令和7年2月)における「取り組みの体系」

第2部

環境影響評価

第2部 環境影響評価

目 次

第1章 環境影響評価の実施内容	2-1
1.1 対象項目の選定	2-1
1.2 調査地域	2-5
1.3 調查·予測方法	2-7
第2章 調査・予測及び評価の結果	2-8
2.1 環境影響評価結果の概要	2-8
2.2 水質	2-15
2.2.1 予測方法	2-15
2.2.2 予測及び評価の結果	2-17
2.2.3 環境保全措置	2-18
2.3 地下水の水位	2-19
2.3.1 導水路トンネルルートの地質構造	2-19
2.3.2 三次元水循環解析	2-20
2.3.3 解析結果	2-21
2.3.4 環境保全対策とモニタリング調査	2-24
2.4 動物	2-25
2.4.1 現地調査結果の概要	2-25
2.4.2 予測及び評価の結果	2-25
2.5 植物	2-27
2.5.1 現地調査結果の概要	2-27
2.5.2 予測及び評価の結果	2-27
2.6 生態系	2-28
2.6.1 生態系の考え方	2-28
262 予測及び評価の結果	2-29

第1章 環境影響評価の実施内容

1.1 対象項目の選定

環境影響評価にあたっては、表 1-1に示す環境影響評価に関する法令や技術基準に示された 考え方を参考に、調査・予測及び評価の対象項目としました。すなわち、事業で行う工事等の行 為と、その行為によって影響を受ける環境要素の関係を整理し、影響をうけるおそれがある環境 要素を環境影響の対象項目に選定しています。

表 1-2は、事業による行為に起因する環境に影響を与える要因(環境影響要因といいます)です。各施設の設置のための工事や資機材の運搬、並びに導水路や各施設の存在、供用などが環境影響要因に位置づけられます。

表 1-3は、影響要因とその影響を受けるおそれのある環境要素の関係を示しており、ここで選定した項目が環境影響評価の対象項目です。表 1-4には、項目の選定、非選定の理由を整理しています。

	衣 1-1 参与とした法や・技術基準
No.	法令•記述基準
1	環境影響評価法(平成9年6月 法律第81号、最終改正 令和7年6月)
2	福岡県環境影響評価条例(平成 10 年 福岡県条例第39号、最終改正 令和7年2月)
3	「ダム事業における環境影響評価の考え方」(平成 12年3月 ダム水源地環境整備センター)
4	「放水路事業における環境影響評価の考え方」(平成 13 年 6 月 河川事業環境影響評価研究会)
5	「道路環境影響評価の技術手法(平成 24 年度版)」(平成 25 年 3 月、国土技術政策総合研究所資料第 714 号)
6	「猛禽類保護の進め方(改訂版)」(平成24年12月 環境省自然環境局野生生物課)
7	「騒音に係る環境基準」(平成 10 年 9 月 環境庁告示 64 号、最終改正 平成 24 年 3 月)
8	「特定建設作業に伴って発生する騒音の規制に関する基準」(昭和 43 年 11 月厚・ 建告示第 1 号、最終改正 平成 27 年 4 月)
9	「振動規制法施行規則」(昭和51年11月総理府令第58号、最終改正平成27年4月)
10	「水質汚濁に係る環境基準」(昭和 46年 12月 環境庁告示第59号、最終改正 令和7年4月)

表 1-1 参考とした法令・技術基準

表 1-2 本事業における環境影響要因

区分	環境影響要因	想定される事業内容
工事の実施	取水施設等の工事	取水施設、中継施設、放流施設の設置工事
	導水路の工事	導水路トンネルの設置工事
土地又は工作物の	取水施設等の存在	取水施設、中継施設、放流施設の存在
存在又は供用	導水路の存在	導水路トンネルの存在
	導水路の供用	導水路の供用

表 1-3 本事業における調査、予測及び評価の項目

影響要因の区分			工事の実施 土地又は工作物の 存在及び供用					
環境要素の区分			工事 取水施設等の	導水路の工事	存在の設等の	導水路の存在	導水路の供用	
		大気質	粉じん等			_	_	_
	大気環境	騒音	騒音			_	-	0
		振動	振動			_	-	0
			土砂による水の濁り				-	•
環境の自然的構			水温	_	l	_		•
成要素の良好な 状態の保持を旨	-l. T⊞ ± ±	水質	富栄養化	_	-	_		•
として調査、予測 及び評価される	水環境		溶存酸素量	_	-	_		•
べき環境要素			水素イオン濃度			_	_	_
		地下水の水 質及び水位	地下水の水位		0	_	0	_
	生係境の環の環境	地形及び地 質	重要な地形及び地 質		ı			
		土壌汚染	土壌汚染(有害物質)	_	_	_	_	_
生物の多様性の 確保及び自然環	動物		重要な種及び注目 すべき生息地				•	
境の体系的保全 を旨として調査、	植物		重要な種及び群落				•	
予測及び評価されるべき環境要素	生態系		地域を特徴づける 生態系		•		•	
人と自然との豊 かな触れ合いの 確保を旨として	景観		主要な眺望点及び 景観資源並びに主 要な眺望景観		_			_
調査、予測及び評価されるべき環境要素	人と自然いの活動の	との触れ合 の場	主要な人と自然と の触れ合いの活動 の場		•		•	
環境への負荷の 量の程度により 調査、予測及び評 価されるべき環 境要素	廃棄物等		建設工事に伴う副 産物		•	_	_	_

凡例

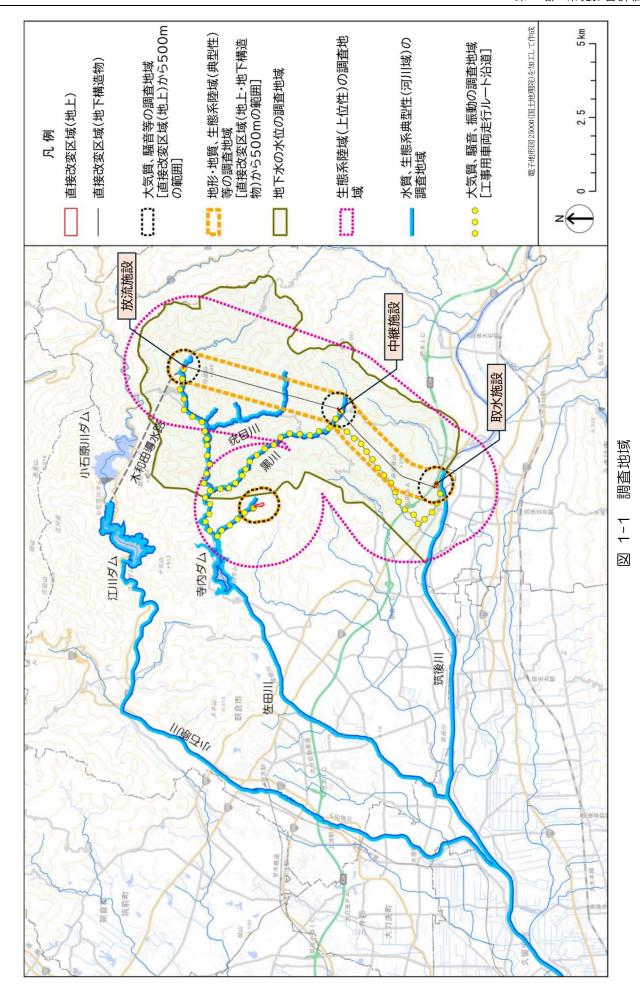
● : ダム省令の参考項目であり、選定した項目 ○ : ダム省令の参考項目ではないが選定した項目 - : ダム省令の参考項目ではなく、非選定の項目

表 1-4(1) 調査、予測及び評価の項目の選定・非選定理由

項目			調査、予例及Ustrimの項目の反応 非反応項目
環境要類	環境要素の区分の図		選定の理由
大気環境	大気質	工事の 実施	取水施設・導水路トンネル等の工事による建設機械の稼働及び工事 用車両の運行に伴う粉じん等により生活環境が影響を受けるおそれ があるため、環境影響検討の項目として粉じん等を選定した。
	騒音	工事の 実施	取水施設・導水路トンネル等の工事による建設機械の稼働及び工事 用車両の運行に伴う騒音により人の健康と生活環境が影響を受ける おそれがあるため、環境影響検討の項目として騒音を選定した。
		土地又は 作物の存 在及び供 用	取水施設の稼動に伴う騒音により人の健康と生活環境が影響を受けるおそれがあるため、環境影響検討の項目として騒音を選定した。
	振動	工事の 実施	取水施設・導水路トンネル等の工事による建設機械の稼働及び工事用車両の運行に伴う振動により人の健康と生活環境が影響を受けるおそれがあるため、環境影響検討の項目として振動を選定した。
		土地又は 工作物の 存在及び 供用	取水施設の稼動に伴う振動により人の健康と生活環境が影響を受けるおそれがあるため、環境影響検討の項目として振動を選定した。
水環境	水質	工事の実施	取水施設・放流施設・導水路トンネル等の工事による濁水の発生 や、コンクリートからのアルカリ分の溶出により生活環境が影響を 受けるおそれがあるため、環境影響検討の項目として水の濁り及び 水素イオン濃度を選定した。
			取水施設・放流施設・導水路トンネル等の供用により、筑後川及び 放流先河川の水温・水質が影響を受けるおそれがあるため、環境影響検討の項目として水温、土砂による水の濁り、富栄養化及び溶存 酸素量を選定した。
	地下水の 水質及び	工事の 実施	導水路トンネル等の工事により地下水の水位が影響を受けるおそれがあるため、環境影響検討の項目として地下水の水位を選定した。
	水位	土地又は 工作物の 存在及び 供用	導水路トンネル等の存在により地下水の水位が影響を受けるおそれがあるため、環境影響検討の項目として地下水の水位を選定した。
土壌に係る環境その他の環	重要な地 形及び地 質	土地又は 工作物の 存在	取水施設・放流施設・導水路トンネル等の設置により土地の改変等が生じることから環境影響検討の項目として選定した。
境	土壌汚染 (有害物 質)	工事の 実施	土壌汚染が確認された場合には、関係法令及び技術基準等(「土壌 汚染対策法」、「建設工事における自然由来重金属等含有岩石・土壌 への対応マニュアル(2023年版)」等)に従って適切に対応し、 その時点で環境への影響のおそれはなくなるため選定しない。

表 1-4(2) 調査、予測及び評価の項目の選定・非選定理由

項目		
環境要素 の区分	影響要因の区分	選別の理由
動物	工事の実施	取水施設・放流施設・導水路トンネル等の工事により土地の改変等が生じるとともに、重要な種及び注目すべき生息地の生息環境が影響を受けるおそれがあるため、環境影響検討の項目として重要な種及び注目すべき生息地を選定した。
	土地又は工作物の存在及び供用	取水施設・放流施設・導水路トンネル等の存在及び供用により土地 の改変等が生じるとともに、重要な種及び注目すべき生息地の生息 環境が影響を受けるおそれがあるため、環境影響検討の項目として 重要な種及び注目すべき生息地を選定した。
植物	工事の実施	取水施設・放流施設・導水路トンネル等の工事により土地の改変等が生じるとともに、重要な種及び群落の生育環境が影響を受けるおそれがあるため、環境影響検討の項目として重要な種及び群落を選定した。
	土地又は工作物の存在及び供用	取水施設・放流施設・導水路トンネル等の存在及び供用により土地の改変等が生じるとともに、重要な種及び群落の生育環境が影響を受けるおそれがあるため、環境影響検討の項目として重要な種及び群落を選定した。
生態系	工事の実施	取水施設・放流施設・導水路トンネル等の工事により土地の改変等が生じるとともに、地域を特徴づける生態系が影響を受けるおそれがあるため、環境影響検討の項目として地域を特徴づける生態系を選定した。
	土地又は工作物の存在及び供用	取水施設・放流施設・導水路トンネル等の存在及び供用により土地の改変等が生じるとともに、地域を特徴づける生態系が影響を受けるおそれがあるため、環境影響検討の項目として生態系を選定した。
景観	土地又は工作物の存在及び供用	取水施設・放流施設・導水路トンネル等の存在による土地の改変等 により主要な眺望点、景観資源及び主要な眺望景観が影響を受ける おそれがあるため、環境影響検討の項目として主要な眺望点及び景 観資源並びに主要な眺望景観を選定した。
人と自然との触れ合いの活動の場	工事の実施	取水施設・放流施設・導水路トンネル等の工事による土地の改変等により人と自然との触れ合いの活動の場が影響を受けるおそれがあるため、環境影響検討の項目として主要な人と自然との触れ合いの活動の場を選定した。
	土地又は工作物の存在及び供用	取水施設・放流施設・導水路トンネル等の存在及び供用による土地 の改変等により人と自然との触れ合いの活動の場が影響を受ける おそれがあるため、環境影響検討の項目として主要な人と自然との 触れ合いの活動の場を選定した。
廃棄物等	工事の実施	取水施設・放流施設・導水路トンネル等の工事による建設発生土等 の建設工事に伴う副産物が発生するため、環境影響検討の項目とし て建設工事に伴う副産物を選定した。


1.2 調查地域

環境影響評価の対象項目の物理的な特性や事業地周辺の地形等を踏まえ、調査の対象とする範囲(以下、「調査地域」といいます)を設定しました。その内容は表 1-5のとおりです。調査ののちには予測を行いましたが、予測の対象範囲も調査地域と同様です。図 1-1は設定した調査地域のおよその範囲です。

表 1-5 調査地域

環境要素	影響要因	調査地域	
大気質	工事	直接改変区域(地上)から 500m の範囲	
騒音	工事及び 存在•供用		
振動	工事及び 存在•供用		
水質	工事	放流施設等のコンクリート構造物を設置する場所及びその下流河川	
	存在•供用	本事業の場合は、導水流入後の佐田川あるいは小石原川が筑後川本川に合流した時点で3倍を大きく上回る流域面積を得ることから、取水地点からこれらの合流点までの範囲を基本的な調査地域とする。さらに、予測及び評価に必要な情報を得るための地域に含まれる河川及びダム貯水池を考慮し、調査地域は以下のとおりとした。 ・ 筑後川のうち取水地点のやや上流から小石原川が本川に合流するまでの区間 ・ 佐田川の放流地点から下流側の筑後川本川と合流するまでの区間 ・ 小石原川の放流地点から下流側の筑後川本川と合流するまでの区間 ・ 佐田川、小石原川は寺内ダム等の貯水池を含む	
地下水の 水位	工事及び 存在•供用	導水経路の周辺に位置する沢・河川において、地下水位の低下の可能性が考えられる範囲	
重要な地 形及び地 質	土地又は 工作物の 存在	地下構造物を含む直接改変区域から 500m の範囲	
植物	工事及び 存在・供用 工事及び 存在・供用	河川域:地下水位の低下の可能性がある範囲周辺の川・沢並びに工事中及び存在・供用時に水質の変化が生じる可能性のある区間周辺。河川ごとの区間は水質の存在・供用における区間と同じとした。 陸域:対象事業実施区域*及びその周辺 500m の範囲	
生態系	工事及び 存在・供用	上位性(陸域):対象事業実施区域から概ね2kmの範囲上位性(河川域):工事中及び存在・供用時に水質の変化が生じる可能性のある区間周辺典型性(陸域):対象事業実施区域を含む集水域典型性(河川域):工事中及び存在・供用時に水質の変化が生じる可能性のある区間周辺。河川ごとの区間は水質の存在・供用における区間と同じとする。	
景観	存在•供用	直接改変区域(地上)から 500m の範囲	
人と自然 との触れ 合いの活 動の場	工事及び 存在•供用	直接改変区域(地上)から500mの範囲及び水質に影響が及ぶと考えられる河川等の周辺の範囲	
廃棄物等	工事	地下構造物を含む直接改変区域	

注)*対象事業実施区域は、取水施設・放流施設・導水路トンネル等の工事による土地の改変区域の周辺 100m とした。

2-6

1.3 調查 • 予測方法

環境影響の調査、予測は、環境影響評価に関連する調査・予測の方法を定めた技術基準等に従いました。これらは環境影響評価法に基づく環境影響評価を行う場合に求められる方法と同様の方法であり、その概要は表 1-6のとおりです。

表 1-6 調查・予測・評価方法

環境要素	調査方法	予測方法	評価方法
大気質	文献調査及び 現地調査	数值計算	• 回避・低減等に係る評価 • 基準又は目標との整合に係る評価
騒音	文献調査及び 現地調査	数值計算	• 回避・低減等に係る評価 • 基準又は目標との整合に係る評価
振動	現地調査	数值計算	• 回避・低減等に係る評価 • 基準又は目標との整合に係る評価
水質	文献調査及び 現地調査	数値計算	• 回避・低減等に係る評価 • 基準又は目標との整合に係る評価
地下水の水位	文献調査及び 現地調査	数值計算	回避・低減等に係る評価
重要な地形 及び地質	文献調査	事業計画との重ね合わせ	回避・低減等に係る評価
動物	文献調査及び 現地調査	事業計画との重ね合わせ水質、地下水の水位等の 影響予測結果を用いた定 性予測	回避・低減等に係る評価
植物	文献調査及び 現地調査	事業計画との重ね合わせ水質、地下水の水位等の 影響予測結果を用いた定 性予測	回避・低減等に係る評価
生態系	文献調査及び 現地調査	事業計画との重ね合わせ水質、地下水の水位等の 影響予測結果を用いた定 性予測	回避・低減等に係る評価
景観	文献調査及び 現地調査	図上解析フォトモンダージュ法を 用いた定性予測	回避・低減等に係る評価
人と自然との 触れ合いの活 動の場	文献調査及び 現地調査	図上解析水質、景観等の影響予測 結果を用いた定性予測	回避・低減等に係る評価
廃棄物等	-(調査は行っ ていない)	事業計画に基づき廃棄物 等の量を算出	回避・低減等に係る評価

第2章 調査・予測及び評価の結果

2.1 環境影響評価結果の概要

本事業の実施に伴う環境影響の検討結果は表 2-1から表 2-10のとおりです。一部の項目では環境保全措置の実施が必要となりますが、環境保全措置を確実に実施することにより周辺地域の環境の保全に深刻な影響を与えることはないと評価しました。

なお、水質、地下水の水位、動物、植物及び生態系の検討結果については、次節以降に詳しく記載しています。

表 2-1(1) 環境影響評価の概要(大気質、騒音、振動)

		表 2-1(1) 環境影響評価の概要(大気質、騒音、	振動/
影響要因	影響検討項目	事業による影響等の概要	環境保全措置• 環境配慮事項
取	大気質 (粉じん 等)	【予測結果】 (建設機械の稼働) ・恵蘇宿地区では降下ばいじんの寄与量が評価基準とした参考値(10t/km²/月)を超過するが、環境保全措置を実施すれば参考値を下回る。 (工事用車両の走行) ・いずれの地点も評価基準とした参考値(10t/km²/月)を下回る。 【評価】 ・恵蘇宿地区では環境保全措置を実施することにより予測結果は整合を図るべき基準と整合するため、本事業による影響は小さい。	【環境保全措置】 ・散水、湿潤化(恵蘇宿) 【環境配慮事項】 ・環境負荷の小さい作業機械の使用 ・仮囲いの活用 ・散水、湿潤化 ・タイヤ洗浄 ・作業場所、時間帯の分散・平準化
収水施設・導水路等の工事	騒音	【予測結果】 (建設機械の稼働) ・恵蘇宿地区では騒音レベルが86dBとなり規制基準値(75dB)を超過するが、環境保全措置を実施すれば規制基準値を下回る。 (工事用車両の走行) ・本事業の工事用車両による寄与は小さいが、恵蘇宿地区では現況値(72dB)が環境基準値を超過している。 【評価】 ・恵蘇宿地区では環境保全措置を実施することにより予測結果は整合を図るべき基準と整合するため、本事業による影響は小さい。	【環境保全措置】 ・防音効果のある仮囲い (恵蘇宿) 【環境配慮事項】 ・環境負荷の小さい作業 機械の使用 ・仮囲いの活用 ・作業場所及び時間帯の 分散・平準化
	振動	【予測結果】 (建設機械の稼働) ・木和田地区、恵蘇宿地区ともに規制基準に適合する。 (工事用車両の走行) ・いずれの地点も要請限度値を下回る。 【評価】 ・本事業による影響は小さい。	【環境保全措置】 一 【環境配慮事項】 ・環境負荷の小さい作業 機械の使用 ・作業場所、時間帯の分 散・平準化

表 2-1(2) 環境影響評価の概要(大気質、騒音、振動)

影響要因	影響検討 項目	事業による影響等の概要	環境保全措置• 環境配慮事項
導水路の供	騒音	【予測結果】 ・取水施設の最近接住居では現況と同値の47dBと予測され、本事業による変化はほとんど生じない。 【評価】 ・本事業による影響は小さい。	【環境保全措置】 一 【環境配慮事項】 ・機器の点検、適切な状態での稼動 ・騒音等のモニタリング調査を行い、必要に応じて防音等の対策を講じる
用 H	振動	【予測結果】 ・取水施設の最近接住居において本事業による変化は ほぼ生じない。 【評価】 ・本事業による影響は小さい。	【環境保全措置】 一 【環境配慮事項】 ・機器の点検、適切な状態での稼動

表 2-2 環境影響評価の概要(水質)

	衣 2-2					
影響要因	影響検討 項目	事業による影響等の概要	環境保全措置• 環境配慮事項			
取水施設・導水路等の工事	水質	【予測結果】 (水の濁り) ・河川に排出されると予測される SS の平均値は、取水施設、放流施設、中継施設で目標値を下回っている。ただし、中継施設においては、工事中の濁水低減のために沈砂池を設置する。また、建設発生土受入地についても、工事中の濁水低減のために沈砂池を設置する。 (pH) ・工事中は矢板を用いるため、河川への pH の影響はないと予想される。 【評価】 ・環境保全措置を実施するため、本事業による影響は小さい。	【環境保全措置】 ・工事中の沈砂池の設置 (中継施設、建設発生 土受入地) 【環境配慮事項】 一			
導水路の供用	水質	(予測結果) ・富栄養化項目について、項目によって程度は異なるものの、寺内ダム、江川ダムでは本事業の実施により濃度が高くなると予測されるが、佐田川、小石原川の流末では、本事業による変化は小さい。ただし、クロロフィルa濃度については、各河川の流末まで影響が残存し、特に江川ダムにおいて変化が大きい。このため、水質保全措置として、江川ダムの曝気1基増設(既設と合わせて計2基稼働)の適用により、江川ダム貯水池と下流河川で小石原川ダム完成時点まで改善する。 ・なお、筑後川本川では、本事業による変化はほとんど生じない。 【評価】 ・環境保全措置を実施するため、本事業による影響は小さい。	【環境保全措置】 ・江川ダムへの曝気設備 1基の追加、既設曝気 装置の運用変更(冷水 対策→富栄養化対策) 【環境配慮事項】 - 【事後調査】 ・予測結果は不確実性を 含む、各河川及びダムの 水質のモニタリングを 実施し、影響の程度を 検証する			

表 2-3 環境影響評価の概要(地下水の水位)

影響要因	影響検 討項目	事業による影響等の概要	環境保全措置• 環境配慮事項
取水施設・導水路等の存在及び供用取水施設・導水路等の工事並びに	地下水の水位	 「予測結果】 ・シールド工法を採用し、さらに区間によっては水密 覆工などの補助工法を用いることにより、地下水の 水位の低下及び地域の水利用への影響は小さいと 予測される。 【評価】 ・事業による影響は生じない、あるいは小さいと評価 する。 	【環境保全措置】 ・地トリーとは、「は、「は、「は、「は、「ない」」で生さい、「は、「ない」で生さい。 ・地トリーとはは、「は、「ない」で生さいが、「は、「ない」で生さいが、「は、「ない」では、「ない」では、「ない」が、「ない」が、「ない」が、「ない」が、「ない。「は、「ない。」が、「ないい。」が、「ない。」が、「ない。」が、「ない。」が、「ない。」が、「ない。」が、「ない。」が、「ない。」が、「ない。」が、「ないい。」が、「ない。」が、「ない。」が、「ない。」が、「ない。」が、「ない。」が、「ない。」が、「ない。」が、「ない。」が、「ないい。」が、「ない。」が、「ないいい。」が、「ないいい。」が、「ないいい。」が、「ないいい。」が、「ないいい。」が、「ないいい。」が、「ないいい。」が、「ないいい。」が、「ないいい。」が、「ないいい。」が、「ないいい。」が、「ないいいい。」が、「ないいいいい。」が、「ないいいいい。」が、「ないいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいい

表 2-4 環境影響評価の概要(地形・地質)

影響要因	影響検 討項目	事業による影響等の概要	環境保全措置 • 環境配慮事項
び取水施設・導水路等の存在取水施設・導水路等の工事及	重要な地形・地質	【予測結果】 ・重要な地形・地質への影響は生じない。 【評価】 本事業による影響はない。	【環境保全措置】 一 【環境配慮事項】 一

表 2-5 環境影響評価の概要(動物・植物)

		我 と ひ 「環境影音計画の佩女(動物・恒物)	
影響要因	影響検討項目	事業による影響等の概要	環境保全措置• 環境配慮事項
取水施設・導水路等の工事並びに取水施設・	動物 (重要はすび) (重要は地)	 「予測結果】 ・本事業による影響を受ける可能性のある動物の重要な種として、哺乳類7種、鳥類43種、爬虫類4種、両生類7種、魚類22種、陸上昆虫類57種、底生動物13種、陸産貝類21種の予測を行った。 ○直接改変の影響 ・クビボソコガシラミズムシは生息環境(植物が豊富な緩流域)の一部が改変されることから、生息状況が変化する可能性がある。 ・上記以外の種については、主要な生息環境が直接改変の範囲に存在しない、又は改変の程度は小さい。 ○直接改変以外の影響 ・重要な種は、いずれの種も本事業による生息環境の変化の程度は小さい。 【評価】 ・クビボソコガシラミズムシは環境保全措置を実施することにより、本事業による影響は小さい。 【評価】 ・その他の重要な種について、いずれの種も本事業による影響は小さい。 	【環境保全措置】 ・水ボッ) ・水ボッ) ・環境のララミズム ・環境を関連を関連を関連を関連を関連を関連を関連を関連を関連を関連を関連を関連を関連を
導水路等の存在及び供用	植物 (重要な種及 び群落)	【予測結果】 ・本事業による影響を受ける可能性のある植物の重要な種として、種子植物・シダ植物・大型藻類 28 種、付着藻類 1 種について予測を行った。 〇直接改変の影響 ・重要な種は、いずれの種も本事業による生育環境の直接改変はない、又は改変の程度は小さい。 〇直接改変以外の影響 ・重要な種は、いずれの種も本事業による生育環境の直接改変以外の変化はない、又は変化の程度は小さい。	【環境保全措置】 - 【環境配慮事項】 ・生育環境の攪乱防止 【事後調査】 ・水質、地下水の水位の影響が想定される植物の重要な種の予測結果には不確実性を含えられることから、事後調査を実施する

表 2-6 環境影響評価の概要(生態系・上位性及び典型性陸域)

	表 2-6 境境影響評価の概要(生態系・上位性及び典型性陸域)					
影響要因	影響検討項目	事業による影響等の概要	環境保全措置• 環境配慮事項			
取水施設・導水路等の工事並びに取水施設・道	上位性	 【予測結果】 ・陸域の注目種としてクマタカ、河川域の注目種としてミサゴを選定し、予測を行った。 ○陸域(クマタカ) ・クマタカのつがいについては、幼鳥の行動範囲、繁殖テリトリーの直接改変があるが、その程度は小さいと予測された。また、それぞれのつがいと予測されたら離れていることから、建設機械の稼働等による生息環境の変化はない又は小さい。 ○河川域(ミサゴ) ・ミサゴ1つがいは、営巣中心域、高利用域の直接改変はない、豊巣場所が工事箇所から工事で離れているといる。 ○河川域(ミサゴ) ・ミサゴ1つがいは、営巣中心域、高利用域の直接改変はない。ままで離れての変化は小さら、建設機械の稼働等による上間である生息環境の変化は小さく、生息環境の変化は小さい。 【評価】 ・いずれのつがいも本事業による影響は小さい。 	【環境保全措置】 一 【環境配慮事項】 ・工事中のクマタカの監 視 ・騒音、振動の発生抑制			
導水路等の存在及び供用	典型性(陸域)	【予測結果】 ・陸域の典型性として、植林地(スギ・ヒノキ植林) を選定し、予測を行った。 ・植林地(スギ・ヒノキ植林)は一部が工事により改変され、その周辺では環境が変化する可能性があるが、大部分の樹林は残存し、また、樹林が分布する山腹等における地下水位の変化の程度は小さいことから、そこに生息・生育する生物群集の生息・生育環境は維持される。 【評価】 ・本事業による影響は小さい。	【環境保全措置】 一 【環境配慮事項】 ・植物の外来種の侵入抑 制			

表 2-7 環境影響評価の概要(生態系・典型性河川域)

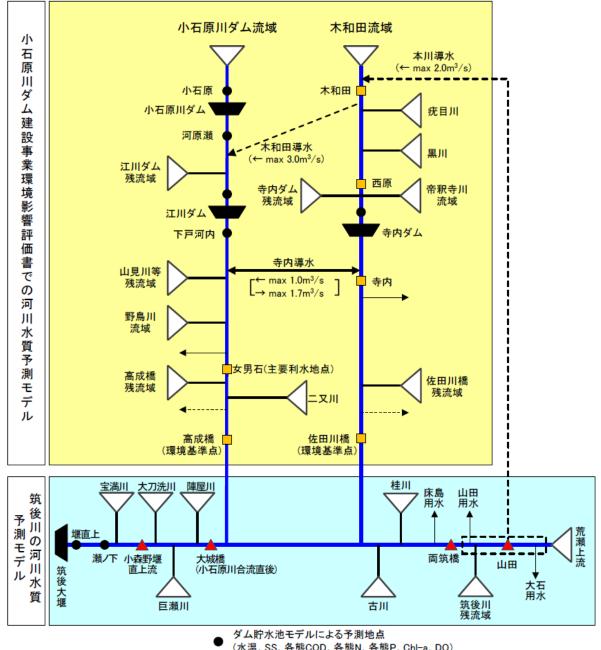
		表 2-7 環境影響評価の概要(生態系・典型性河川	
影響要因	影響検討項目	事業による影響等の概要	環境保全措置• 環境配慮事項
取水施設・導水路等の工事並びに取水施設等の存在及び導水路等の供用	典河型川性域	【予測結果】 ・河川域の典型性として、「筑後川中流域」、佐田川及び小石原川の「平野を流れる川」、佐田川及び小石原川の「渓流的な川」、寺内ダム及び江川ダムの「貯水池」の4区分を選定し、予測を行った。 ○直接改変の影響 ・筑後川中流域及び渓流的な川(佐田川)の一部は改変されるが、改変の程度は小さい。 ・その他の区分は改変されない。 ○直接改変以外の影響 (水質:土砂による水の濁り、pH)・筑後川の取水施設及び佐田川の放流施設の工事に伴うSSやpHの変化は小さく、生息・生育環境の変化は小さい。 ○直接改変以外の影響 (水質:土砂による水の濁り、pH)・筑後川の取水施設及び佐田川の放流施設の工事に伴うSSやpHの変化は小さく、生息・生育環境の変化は小さく、生息・生育環境の変化は小さく、生息・・流後川中流域、平野を流れる川(佐田川・小石原川)及び貯水池(佐田川)のうち、導水路放流施設の直下流では水温上昇の可能性があるが、支川が合流する下流で変化は小さくなり、全体としては生息・生育環境は維持される。 ・渓流のな川(佐田川)のうち、江川ダム下流で水温上昇の可能性があるが、大り下流や江川ダム上流の区間では水温の変化は小さく、全体としては生息・生育環境は維持される。 (水質:クロロフィル a)・一部の区分でクロロフィル a が増加する可能性があるが、その変化は小さく、生息・生育環境の変化は小さい、(流況、河床材料)・いずれの区分においても流況の変化は小さく、生息・生育環境の変化は小さいの段分においても流況の変化は小さく、生息・生育環境の変化は小さい。(外来種の迷入)・現地調査において確認された外来種のうち、筑後川の取水施設周辺で確認されているが長田川で確認されているい種、又は低田川及であり、気後川の取水施設周辺で確認されているが展においているではにより、生態は一つが表においているが表においているが表に表に表に表に表に表に表に表に表に表に表に表に表に表に表に表に表に表に表に	【環境保全措置】 一 【環境配慮事項】 ・外ニタッと ・物生息・ 物生息・ も も も も も も も も も も も も も も も も も も も

表 2-8 環境影響評価の概要(景観)

影響 影響 要因 頭目 事業による影響等の概要	環境保全措置•環境配慮事項				
取水施設は既存の住居等の構造物と併せが視認される程度であるか、予測地点に を連入水路路等の 景観 「評価」 ・本事業の実施に伴う影響は小さい。	世てその一部 <u></u> によっては全 _{【環境配慮東頂】}				

表 2-9 環境影響評価の概要(人と自然との触れ合いの活動の場)

影響 影響検 要因 討項目	事業による影響等の概要	環境保全措置• 環境配慮事項
取水施設・導水路等の存在及び供用取水施設・導水路等の工事並びにとのいのとのいの自触のの自触の場合を表現がある。	【予測結果】 ・人と自然との触れ合いの活動の場の改変は生じない。 ・快適性、利用性の変化や低下はほとんど生じない。 【評価】 本事業の実施に伴う影響は小さい。	【環境保全措置】 一 【環境配慮事項】 ・低騒音・低振動型機械 の使用 ・建設機械及び工事用車 両の使用時間帯の分 散・平準化


表 2-10 環境影響評価の概要 (廃棄物等)

影響要因	影響検 討項目	事業による影響等の概要	環境保全措置• 環境配慮事項
取水施設・導水路等の工事	廃棄物等	【予測結果】 (産業廃棄物) ・取水施設等の設置に伴い、木くず(伐採木)400t及び汚泥33,700tの発生が予測される。木くずは全量を再資源化するため最終処分は発生しないが、汚泥は全量を最終処分する。 (建設発生土) ・導水路トンネルの掘削等に伴い、約11万m³の建設発生土が発生するが、外部の処分場における最終処分は行わない。 【評価】 ・産業廃棄物は再利用に努めたうえで関係法令に従い適切な最終処分を行い、建設発生土は外部での最終処分は行わない。よって本事業の実施に伴う影響は小さい。	【環境保全措置】 一 【環境配慮事項】 一

2.2 水質

2.2.1 予測方法

予測する項目は、土砂による水の濁り(SS)、水温、富栄養化項目(COD、BOD、T-N、T-P、クロロフィルa)、溶存酸素量とし、水質予測モデルによる数値シミュレーションにより予測 を行いました。図 2-1は水質予測モデルの基本的な構成です。図に示すように、本導水事業の水 質への影響要因を精度良くモデル化することで、適正な影響評価と効果的かつ効率的な水質保全 対策の検討が可能となっています。

- (水温、SS、各態COD、各態N、各態P、Chl-a、DO)
- □ 河川モデルによる予測地点(水温、SS、BOD、T-N、T-P、DO、Chl-a)
- 筑後川の河川モデルによる予測地点(水温、SS、BOD、T-N、T-P、DO、Chl-a)

図 2-1 予測モデルの全体構成の模式図

【参考:ボーレンワイダーモデルによる富栄養化状況の判定】

ボーレンワイダーモデル(Vollenweiderモデル)を用いて、寺内ダム、江川ダム、小石原川ダムの各事業フェーズでの富栄養化状況を判定しました。ボーレンワイダーモデルは、富栄養化の可能性とリンの流入負荷、水理条件(回転率×平均水深)との間に密接な関係があることを利用して、富栄養化現象発生の可能性を予測するものです。

以下に、関連事業である寺内ダム再生事業を含めた事業フェーズごとの、各ダムでのボーレン ワイダーモデル算定結果を示します。

いずれのダムについても、どの事業フェーズにおいても「富栄養化現象発生の可能性が高い領域」となっています。また、いずれも変動幅は小さく、富栄養化現象の傾向に変化は見られないものと考えられます。

【寺内ダム】

寺内ダム Vollenweiderモデル算定結果 1000.00 $\lambda = 0.03 (10 + H \cdot \alpha)$ (g/m2/: 小石原川ダム完成後 富栄養化現象発生の 寺内ダム再生事業後 可能性が高い領域 (赤線より上領域) ダム群連携事業後 100.00 単位湛水面積あたりの年間リン流入負荷量 10.00 富栄養化現象発生の 可能性が低い領域 (青線より下領域) ・平成21年~平成30年の各年平均値 1.00 ・流入T-P負荷量は、佐田川本川、帝釈寺川のL-Q式(出水時調査込み)により算定。 湛水面積は各事業時の平常時最高貯水付出 の面積(推定値)を適用 ・ダム群連携事業は本川導水の影響を考慮 0.10 10000 100 1000 (平均水深)×(回転率)

【江川ダム】

【小石原川ダム】

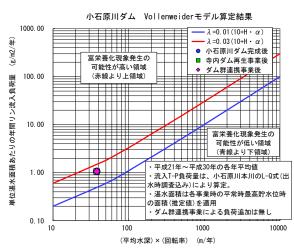


図 2-2 ボーレンワイダーモデルによる富栄養化状況の判定結果

2.2.2 予測及び評価の結果

水の汚れの指標であるBODについて、水質シミュレーションよる予測結果を図 2-3に示します。図 2-3では、左側に各河川に設定した予測地点を含む模式図を、右側に各地点の事業フェーズ毎の予測値を示しています。寺内ダム及び江川ダムではやや上昇がみられましたが、ダムより下流での変化は小さく、事業による影響はほとんどみられませんでした。

ただし、図 2-4に示すように、江川ダムでは植物プランクトンの指標であるクロロフィルaの 年最大値が上昇すると予測されました。江川ダムでは、小石原川ダム完成以前は毎年のようにア オコが発生していたことから、本事業後にもアオコの発生が懸念されます。

なお、水質シミュレーションでは関連事業である寺内ダム再生事業の影響も予測していますが、 寺内ダム再生事業での影響は小さいと予測されました。

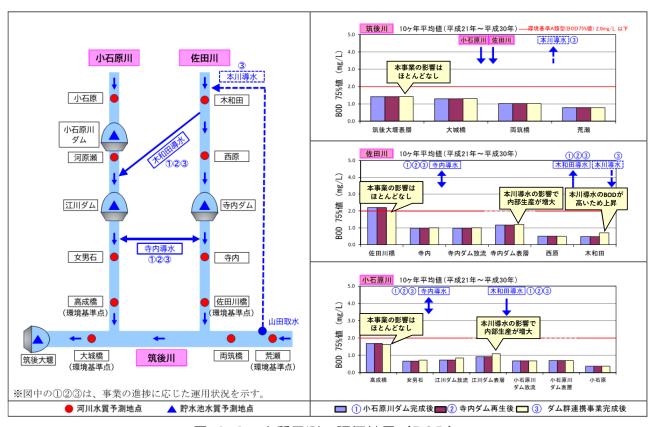


図 2-3 水質予測・評価結果(BOD)

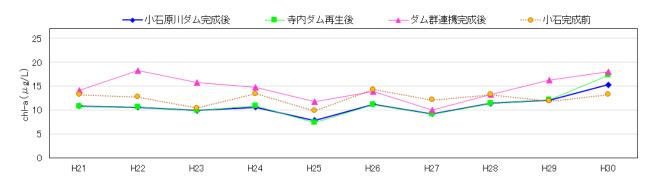
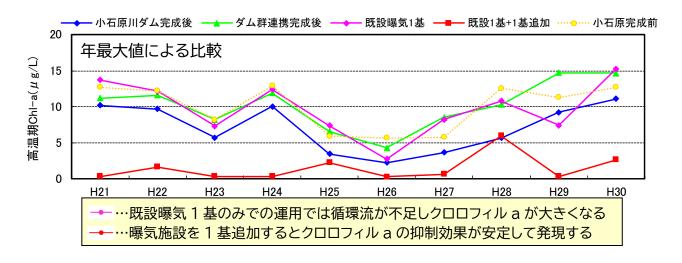


図 2-4 水質予測・評価結果(江川ダムのクロロフィル a の年最大値)

2.2.3 環境保全措置

本事業の運用による江川ダムにおける植物プランクトン増殖軽減のため、環境保全措置として、図 2-5に示す既設曝気施設の運用変更および曝気施設の追加を検討しました。


環境保全措置の効果の予測結果は図 2-6のとおりです。既設曝気施設の運用変更(図 2-5の ①)に加え、曝気施設を1基追加(同図の②)することにより、江川ダムにおけるクロロフィルa の増殖が抑制され、植物プランクトン(アオコ)の発生が低減されると予測されます。

江川ダムに発生したアオコ (平成 21 年 9 月撮影)

図 2-5 江川ダムにおける環境保全措置の内容

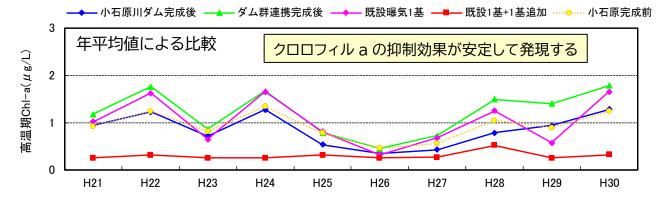


図 2-6 環境保全措置の効果(江川ダムのクロロフィル a)

2.3 地下水の水位

トンネルの掘削方法は複数の種類があります。そこで本事業では、採用する可能性が比較的高いと考えられる4ケースを想定し、そのそれぞれについて「三次元水循環解析」を用いて導水路トンネル掘削後の河川水や地下水の変化を予測しました。得られた予測結果のうち、地下水等への影響が最も少ない工法を採用することとしています。

2.3.1 導水路トンネルルートの地質構造

長年にわたる地質調査の結果から、導水路トンネルルートの大まかな地質構造を把握できており、図 2-7はその断面構造を示しています。特徴として、ルートの多くは泥質片岩を主体としていますが、中継施設より北側には砂質片岩や火山岩のデイサイトも分布します。

全区間を通じて、透水性が高く地中の水みちとなりやすい破砕部が各所で確認されています。 特にトンネルと疣目川が交差する箇所には破砕部が密集しています。また、鳥屋山デイサイトの 下端部には火山砕屑岩層がありますが、これらの場所ではトンネルを通した場合に湧水量が多く なることが予想されます。

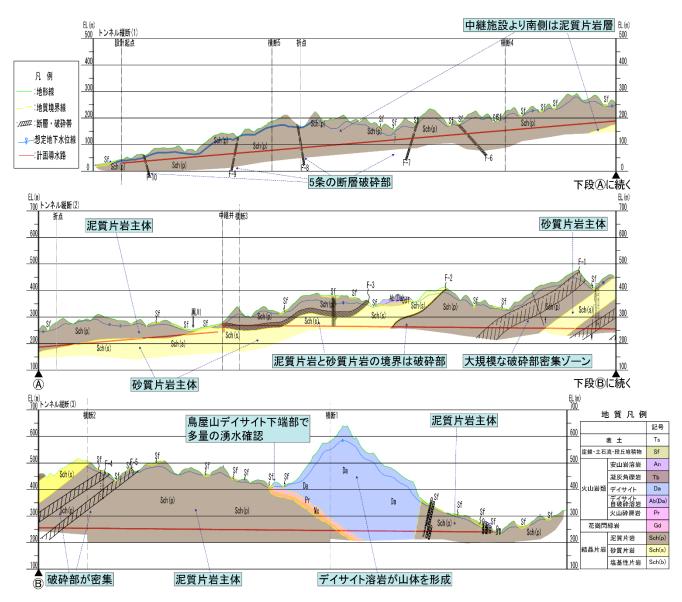


図 2-7 トンネルルート沿いの水理地質断面図

2.3.2 三次元水循環解析

将来の地下水位等の分布を求めるため、「三次元水循環解析」を用いました。これは、図 2-8 に示すように大気中から地中までの水循環機構をモデル化したものであり、気象条件や地形、地層等の自然条件及び土地利用や水利用などの人工的な要素を考慮して導水路トンネル設置後の地下水や河川水の分布を求めることができるものです。本検討では、多相多成分流体を対象とした汎用地圏流体シミュレータ「GETFLOWS」(GEneral purpose Terrestrial fluid-FLOW Simulator)というモデルを使用しました。

図 2-9は解析にあたってモデル中で設定した地形、土地利用及び地質の条件を図化したものです。各条件は地質ボーリング等の現地調査結果や入手可能な公表資料から得られるデータを組み合わせて作成しました。

表 2-11は解析を行った各ケースの内容です。本事業の工事で採用する可能性のある工法を比較検討しました。各ケースはNATM工法とシールド工法、あるいは補助工法の有無で区別できますが、解析結果を受けて、本事業ではトンネル内湧水量が最も少なくなるC5ケースを採用する計画です。

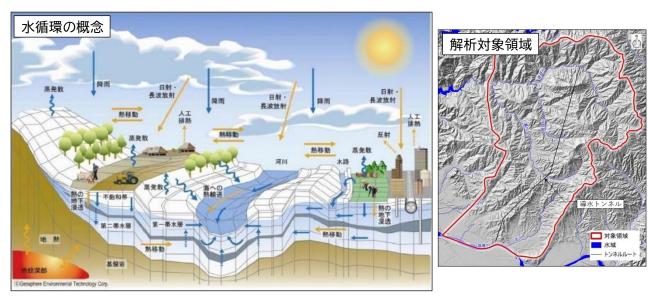


図 2-8 三次元水循環機構の概念(左)と解析対象領域(右)

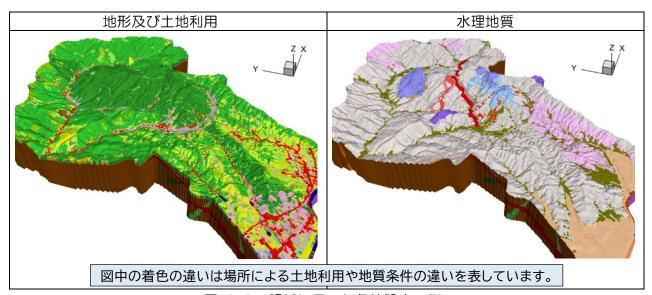
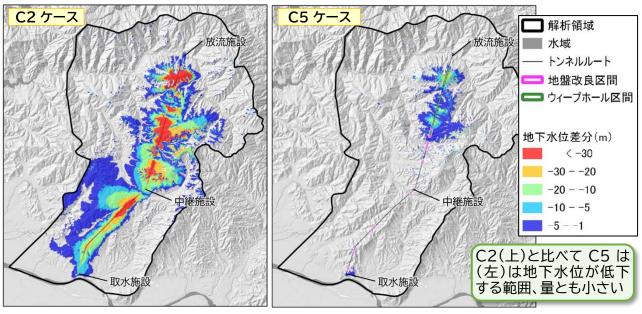


図 2-9 解析に用いた条件設定の例

耒	2-11	解析ケース
ユて	_	カナリノ ノン


ケーフ	区間		対 トンネル		ンネル		
ケース名	【下流区間】 圧送管区間	【上流区間】 自然流下区間	補助内湧水の工法程度			備考	
C2	NATM	NATM	無		大	山岳地帯における一般的な工法である山岳 工法(NATM)を全区間に採用する場合	
СЗ	NATM	NATM	有			C2 に対し、補助工法 (破砕帯等の高透水部への薬液注入等) を施工	
C4	シールド工法 (水密覆工)	NATM	有			C3 に対し、下流区間を漏水の少ないシール ドエ法(水密覆工)に変更	
C5	シールド工法(水密覆工)	シールド工法(通常覆工)	有		小	全区間をシールド工法とする場合 ・下流区間は水密覆工、上流区間は通常覆工 ・高水圧区間では水抜きを考慮	

2.3.3 解析結果

(1) 地下水位への影響

三次元水循環解析により、導水路トンネルを建設した場合の地下水の動きを計算し、そこから 将来の地下水位や河川流量の変化を予測しました。

図 2-10はC2とC5ケースの場合の事業実施前の状態に対する地下水位の低下量を示しています。図 2-11はC5ケースの縦断図です。C5ケースでは、地下水位が低下するのは中継施設と放流施設の間の一部の範囲にほぼ限られます。この場所では鳥屋山などがあって地下水位が高いことなどからトンネル内部に水抜き穴(ウィープホールといいます)を設置せざるを得ないため、ある程度の地下水位の低下が起こります。一方、その他の場所では、水を通しやすい破砕部が集まる疣目川付近を含めて地下水位の低下は起こらないか、起こってもその程度は小さいと予測されます。

地盤改良区間…トンネル内湧水を低減するための地盤改良を行う区間 ウィープホール区間…トンネル内湧水の排出のための水抜き穴の設置区間

図 2-10 地下水位の変化(平面分布)

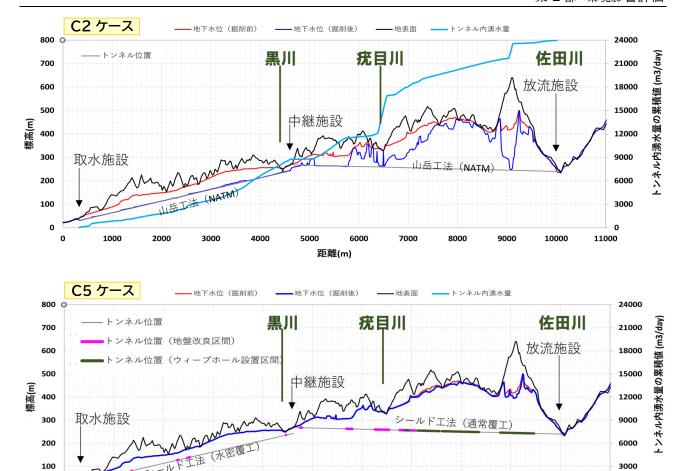


図 2-11 地下水位の変化(断面図)と湧水量

距離(m)

(2) 河川流量への影響

図 2-12はケースごとの河川流量の変化です。ウィープホール設置の影響により、疣目川及び黒川では現況の流量と比べて流量が減少しますが、その他の河川では減少はほとんど起こりません。また、各ケースを比較するとC5ケースの場合が最も河川流量の減少量が少なくなり、河川流量の維持の観点でもC5ケースの工法が優位あることがわかりました。

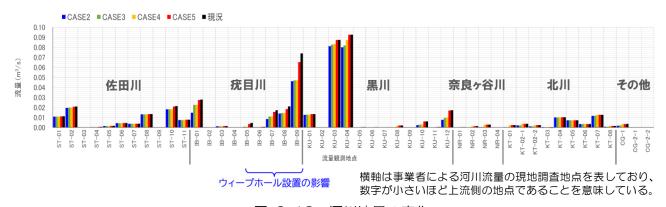


図 2-12 河川流量の変化

(3) 地域の水利用への影響

表 2-12は解析ケースごとに地域の水利用への影響を予測したものです。図 2-13は、C2と C5のケースについて、地下水の低下の程度と水利用のある場所を重ね合わせた図です。

C2、C3及びC4の各ケースでは井戸水や表流水の取水障害が懸念されますが、C5ケースの場合は影響が小さく、現在と同様の利用が可能と予測されます。C5ケースでも中継施設と放流施設の区間では地下水位の低下が生じますが、図 2-13のとおり井戸や湧水が利用されている場所とは重ならないため、地域の水利用への影響は小さいと言えます。

検討ケース	C2	C3	C4	C5
井戸水への 影響	奈良ヶ谷川、黒川 及び疣目川沿川で は <u>取水障害が懸念</u> される。	奈良ヶ谷川、黒川 及び疣目川沿川で は <u>取水障害が懸念</u> される。	黒川及び疣目川沿 川では <u>取水障害が</u> <u>懸念</u> される。	現在と同様の利用が可能と予測される。
表流水への影響	下流のため池、疣 目川の上流及び黒 川地区一帯では河 川・沢水流量の減 少に伴う <u>取水障害</u> が懸念される。	下流のため池、疣 目川の上流及び黒 川地区一帯では河 川・沢水流量の減 少に伴う <u>取水障害</u> が懸念される。	疣目川の上流及び 黒川地区一帯では 河川・沢水流量の 減少に伴う <u>取水障</u> 害が懸念される。	現在と同様の利用 が可能と予測され る。
総合評価 (地域の水利用 への影響)	×(影響大)	×(影響大)	△(影響中)	〇(影響小)

表 2-12 地域の水利用への影響

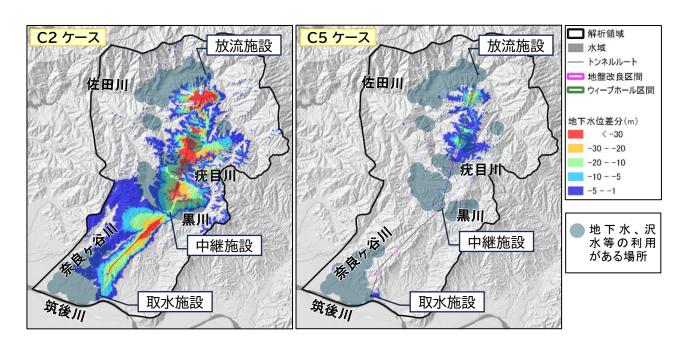
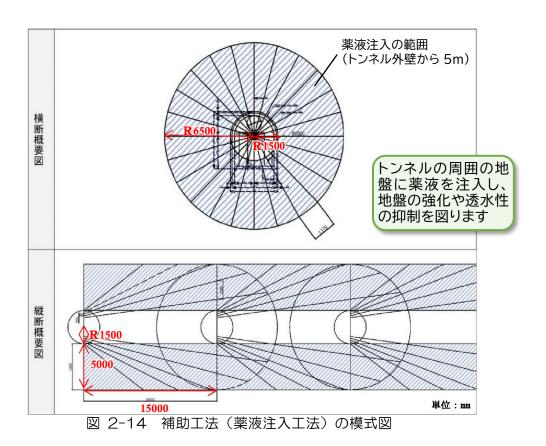


図 2-13 地下水位の変化と水利用の重ね合わせ図


2.3.4 環境保全対策とモニタリング調査

(1) 環境保全対策

トンネル掘削が地下水に及ぼす影響は、その場所の地質構造や選択した工法によって異なります。そこで本事業では、ボーリング調査や弾性波探査などの様々な地質調査を広範囲で行い、地域の水理地質構造の把握に努めてきました。そのうえで地中の地下水の動態を比較的高精度で再現できる「三次元水循環解析」を用いて、事業実施後の地下水・河川の水位や地域の水利用への影響を予測し、地下水の保全に効果的な工法を検討しました。

検討結果は前述とおりであり、シールド工法を採用するC5ケースの工法であれば地下水への影響は小さいと考えられ、実際の工事においてもこの工法を採用する計画です。C5ケースでは、区間ごとの地質の特性によっては図 2-14に代表される湧水を抑制するための補助工法を用いることとしています。これにより、破砕部などの透水性が高い場所でも地下水への影響を抑制することができます。

さらに、今後も地質調査等を継続しつつ、トンネル掘削に関する技術開発の進展にも留意し、 地下水への影響がより少ない掘削工法の検討を継続します。

(2) モニタリング調査

本事業ではできる限りの調査や事前検討を行ったのちにトンネルの施工に着手する予定ですが、調査を重ねても現地の地質構造をすべて把握することは難しく、解析の土台となる水理地質特性に不明瞭な部分が残ってしまうため解析結果は不確実性を含みます。

そのため本事業では、事業影響を把握するためのモニタリング調査を継続して行っています。 導水路トンネル周辺の既存井戸や河川等において、長期間にわたって水位や流量の定期的な観測 を行い、異常が認められれば速やかな原因究明と対策検討を行います。

2.4 動物

2.4.1 現地調査結果の概要

既存文献整理及び現地調査の結果、事業影響の予測の対象とする種(現地調査で確認されている重要な種)は、表 2-13に示す174種としました。

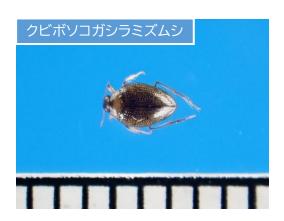
分類群	予測対象種
哺乳類	7 種(ニホンコキクガシラコウモリ、ヤマコウモリ、ユビナガコウモリ、コウモリ目(A)、ムササビ、カヤネズミ、キツネ)
鳥類 (猛禽類含む)	43 種(ヤマドリ、オシドリ、ミゾゴイ、ヨタカ、ミサゴ、クマタカ、オオルリ等)
爬虫類	4種(ニホンスッポン、タカチホヘビ、シロマダラ、ヒバカリ)
両生類	7種(チクシブチサンショウウオ、アカハライモリ、ニホンヒキガエル、トノサマガエル等)
魚類	22種(スナヤツメ南方種、ニホンウナギ、ヌマムツ、ゼゼラ、ツチフキ、ミナミメダカ等)
陸上昆虫類	57種(ドウシグモ、キイトトンボ、ムカシヤンマ、シルビアシジミ、ヘイケボタル、ミツギリゾウムシ、エサキコンボウハナバチ等)
底生動物	13種(モノアラガイ、キュウシュウササノハガイ、マツカサガイ広域分布種、クビボソコガシラミズムシ等)
陸産貝類	21種(ヤマタニシ、ケシガイ、ナガオカモノアラガイ、レンズガイ、ヒメカサキビ等)

表 2-13 事業影響の予測の対象とする種

注)文献のみの確認種、予測地域内での現地確認が無い又は不明な種、一時的に飛来した可能性が高いと考えられる 種は予測対象としなかった。

2.4.2 予測及び評価の結果

動物について、調査・予測を行った結果、底生動物のクビボソコガシラミズムシについては、 工事の実施に伴い生息状況が変化する可能性があることから環境保全措置を検討しました。その 他の多くの重要な種は、本事業による生息環境の変化が小さいことから生息が維持されると考え られます。


生息環境への影響が予測されたクビボソコガシラミズムシについては、生息環境が早期回復で きるように環境保全措置を実施します。

さらに、環境への配慮として、「工事中の希少猛禽類の監視」、「騒音、振動の発生抑制」、「濁水等の流出防止」、「生物に配慮した夜間照明」、「生息環境の攪乱防止」を行います。

これらにより、動物の重要な種に係る環境影響が事業者の実行可能な範囲内でできる限り低減 されるため、本事業による影響は小さいと考えられます。

(1) クビボソコガシラミズムシの環境保全措置(水際環境の再生)

クビボソコガシラミズムシは、取水樋門予定地の水際で確認されています。その水際は消波ブロックが設置された水制によって流れの緩い環境となっており、土砂が堆積した河岸の低地にツルヨシ群集等の植生が存在しています。本種はこのような環境に局所的に生息する種であるため、供用後の水際に植生が成立しやすい護岸(材質・構造)を検討します。工事後も現況と同じように消波ブロックを設置する計画であり、水際植生が成立する流れの緩い水際の環境を形成することにより、クビボソコガシラミズムシをはじめ同様な環境に生息する水生昆虫等の生息環境を再生します。

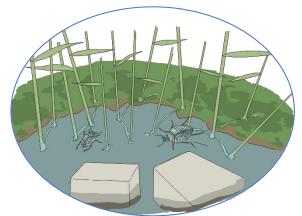


図 2-15 保全対象のクビボソコガシラミズムシと水際環境の再生イメージ

(2) その他の配慮事項

環境保全措置とは別に、環境への配慮として以下の項目を行います。

1) 工事中の希少猛禽類の監視

猛禽類は年によって営巣地を変える可能性があるため、工事箇所の近傍に営巣地が移動していないこと、工事箇所に対する忌避行動がないことを確認します。

2) 騒音、振動の発生抑制

工事には低騒音・低振動型建設機械を用います。また、低騒音・低振動の工法の採用及び民間 企業の技術(新技術)の活用に努めることにより、工事に伴う騒音・振動の発生を抑え、工事箇 所周辺の動物の生息に与える影響を極力低減します。

3) 濁水等の流出防止

降雨時に工事中の裸地から発生する濁水をはじめとした工事中の排水は、排水経路を設けて集水し、さらに経路中に沈砂池等を設置して濁りや汚れを十分に低減させてから水路や河川に放流します。これにより、河川水質に与える影響を極力低減します。

4) 生息環境の攪乱防止

改変区域周辺の環境を必要以上に攪乱しないように、工事関係者の工事区域周辺部への立ち入りを制限します。

2.5 植物

2.5.1 現地調査結果の概要

既存文献整理及び現地調査の結果、事業影響の予測の対象とする種(現地調査で確認されている重要な種)は表 2-14に示すとおり29種としました。

表 2-14 事業影響の予測の対象とする種

分類群	予測対象種
種子植物・シダ植物 (大型藻類含む)	28種(カンアオイ属、ミクリ、ハイチゴザサ、コイヌガラシ、シタキソウ、カワヂシャ、アサザ、エビネ、ナガミノツルキケマン、マルバノホロシ等)
付着藻類	1種(タンスイベニマダラ)

注) 文献のみの確認種、予測地域内での現地確認が無い又は不明な種は予測対象としなかった。

2.5.2 予測及び評価の結果

事業影響の予測を行った結果、植物の重要な種の生息環境の変化は小さく、生育は維持されると考えられます。したがって、工事中の環境保全措置は検討しないものとします。

その他、環境への配慮として、「残存する生育環境の攪乱に対する配慮」を行います。

これらのことより、植物の重要な種に係る環境影響が事業者の実行可能な範囲内でできる限り 低減されるため、本事業による影響は小さいと考えられます。

(1) 環境保全措置

植物の重要な種の生息環境の変化は小さく、生育は維持されると考えられることから、工事中の環境保全措置は実施しません。

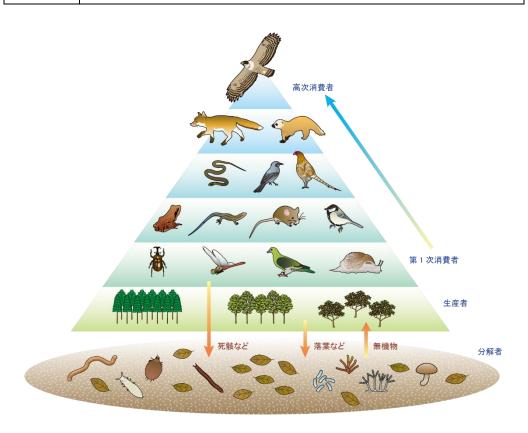
(2) その他の配慮事項

環境保全措置とは別に、環境への配慮として以下を行います。

1) 生育環境の攪乱防止

改変区域周辺の環境を必要以上に攪乱しないように、工事関係者の工事区域周辺部への立ち入りを制限します。特に、カンアオイ属やオオヒナノウスツボ等の生育地点が工事箇所に近いため、生育地点近くの道路際の林縁部にマーキングし、立ち入らないように留意します。

2.6 生態系


2.6.1 生態系の考え方

生態系は、大気や水、土壌などにおける物質循環や、生物間の食物連鎖(捕食と被食、分解)などを通じて、その構成要素を変化させながら全体としてバランスを保っています。その相互作用は極めて複雑ですが、多様な生物及びそれらが構成する多様な生態系から成る生物多様性が、個々の生物の生存の基盤となっています。

事業実施区域の周辺地域における生態系を評価するにあたり、「地域を特徴づける生態系」として、「上位性」及び「典型性」の視点から注目される生物種又は生物群集(以下「注目種等」という)及び生息・生育環境を抽出して影響を予測しました。選定した注目種等は表 2-15に示すとおりです。

2,		
項目	注目種等	
上位性	陸域: クマタカ 水域: ミサゴ	
典型性	陸域:スギ・ヒノキ植林 河川域:河川環境類型区分の4区分(渓流的な川、平野を流れる川、 筑後川中流域、貯水池)	

表 2-15 生態系の注目種等

事業地周辺では、スギ・ヒノキ植林を主体とした樹林地、点在する耕作地等を基盤として、植物を餌とする 多種の昆虫類・鳥類・陸産貝類、さらにこれらを捕食する両生類、爬虫類、鳥類、哺乳類が生息しています。 また落ち葉、死がいやフン等は微生物に分解され、その養分を植物が吸収して成長しています。 クマタカ等の猛禽類は食物連鎖の最上位に位置します。

図 2-16 生態系の上位性の視点による食物連鎖のイメージ

2.6.2 予測及び評価の結果

(1) 上位性

生態系の上位性では、陸域の注目種としてクマタカ、河川域の注目種としてミサゴを選定し、調査、予測を実施しました。

ミサゴについては、事業による営巣中心域、高利用域の直接改変はありません。また、工事予 定箇所は営巣場所から離れており、工事中も繁殖活動は維持されると考えられます。

クマタカについては、確認されたいずれのつがいにおいても、事業による幼鳥の行動範囲、繁殖テリトリーの直接改変はありません。また、3つがいにおいてはコアエリア内で工事が実施されるものの、改変率は小さく、いずれのつがいも営巣場所は工事箇所から離れていることから、生息環境の変化は小さいと考えられます。

したがって、上位性の注目種に対しては環境保全措置は実施しません。

その他、環境への配慮として、「クマタカの工事中の監視」、「騒音、振動の影響抑制」を行います。

これらのことより、生態系の上位性に係る環境影響が事業者の実行可能な範囲内でできる限り回避又は低減されるため、本事業による影響は小さいと考えられます。

クマタカ

ミサゴ

1) 環境保全措置

上位性の注目種として選定されたクマタカ、ミサゴについては、いずれのつがいについても直接改変及び直接改変以外の影響が想定されない又は小さいと予測されたことから、環境保全措置は実施しません。

2) その他の配慮事項

環境保全措置とは別に、環境への配慮として以下の項目を行います。

① 工事中のクマタカの監視

クマタカの3つがいの高利用域の一部に直接改変区域が含まれており、今後、営巣地を変える可能性もあることから、環境影響をより軽減するための対応として、専門家の指導及び助言を得ながら繁殖状況調査等の環境監視を丁事期間中に実施します。

② 騒音、振動の発生抑制

工事には低騒音・低振動型建設機械を用います。また、低騒音・低振動の工法の採用及び民間 企業の技術(新技術)の活用に努めることにより、工事に伴う騒音・振動の発生を抑え、工事箇 所周辺の猛禽類の生息に与える影響を極力低減します。

(2) 典型性(陸域)

生態系の典型性(陸域)は、他地域と比べて多様な動物・植物がみられるスギ・ヒノキ植林(920.2ha、調査地域の約6割)を代表的な環境類型区分として調査、予測を実施しました。

本事業によりスギ・ヒノキ植林の一部範囲が改変される (0.8ha、改変率0.1%) ものの、大部分は残存します。改 変区域付近では環境が変化する可能性があります(4.1ha、

改変率O.4%)が、大部分は残存することから、樹林の階層構造の変化は小さいと予測されます。 したがって、本事業によるスギ・ヒノキ植林の生態系への影響は小さいと考えられることから、 典型性(陸域)に対しては環境保全措置を実施しません。

その他、環境への配慮として、「外来種への対応」を行います。

これらのことより、生態系の典型性(陸域)に係る環境影響が事業者の実行可能な範囲内でできる限り回避又は低減されるため、本事業による影響は小さいと考えられます。

1) 環境保全措置

スギ・ヒノキ植林は、一部が改変されるものの大部分は残存し、そこに生息・生育する生物群 集は事業後も維持されると予測されたことから、環境保全措置は実施しません。

2) その他の配慮事項

環境保全措置とは別に、環境への配慮として以下の項目を行います。

① 植物の外来種の侵入抑制

取水施設等の工事箇所において早期の植生回復を図るとともに、可能な限り植物の外来種の侵入を抑制するため、地域性系統を考慮した在来種の利用に努めます。

(3) 典型性(河川域)

生態系の典型性(河川域)は、渓流的な川、平野を流れる川、筑後川中流域、貯水池を代表的な環境類型区分として調査、予測を実施しました。

本事業により渓流的な川及び筑後川中流域の一部範囲が改変されるものの、大部分は残存することから、事業による環境の変化は小さいと予測されます。また、事業後の水質、河床材料、流況、地下水の水位の変化は小さいことから、取水施設及び放流施設下流河川に生息・生育する生物群集は事業後も維持されると考えられます。

貯水池(江川ダム)においては、クロロフィルaが増加する可能性があるものの、水質の環境保全措置を行うことにより低減されます。

水温の変化については、筑後川中流域、平野を流れる川及び貯水池の区分では事業後の変化は小さく、水生生物の生息環境へ影響は小さいと考えられます。一方、渓流的な川の区分では、佐田川の一部の区間(放流施設直下流の木和田)において、事業後は9月に最大1.4℃の水温上昇の可能性があります。ただし、筑後川から取水した河川水は導水路トンネルの地熱による冷却効果によって冷やされることを考慮すると、放流先河川における夏季の水温の変化は予測値よりも小さくなると考えられます。また、支川が合流する下流(西原)では水温の変化が小さく、放流施設より上流では水温の変化は想定されません。小石原川の一部区間(江川ダム下流の下戸河内)において、江川ダムの水質保全対策により、ダム貯水池の水が循環し、冷水放流が抑制されるため、9月に最大2.1℃の水温上昇の可能性があります。しかし、下流(女男石)や江川ダム上流では水温の変化が小さくなります。これらのことから、佐田川及び小石原川の渓流的な川全体としては水生生物に対する影響は小さいと考えられます。

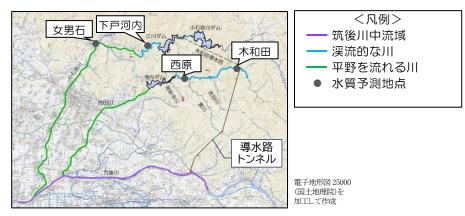


図 2-17 水温の予測位置

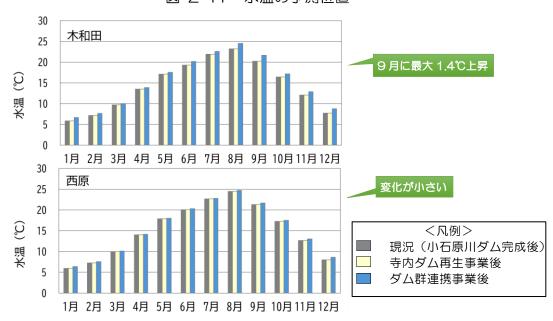


図 2-18 水温の変化(上:木和田地点、下:西原地点)

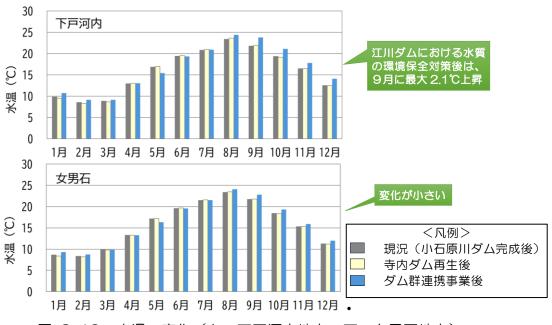


図 2-19 水温の変化(上:下戸河内地点、下:女男石地点)

したがって、典型性(河川域)に対しては環境保全措置を実施しませんが、環境配慮として、 水温変化に留意しつつモニタリング調査を実施します。

また、外来種の迷入による影響については不確実性を伴うことから、環境配慮として「外来種の拡散防止」、「モニタリングによる生物生息・生育状況の監視」を実施していきます。

これらのことより、生態系の典型性(河川域)に係る環境影響が事業者の実行可能な範囲内でできる限り回避又は低減されるため、本事業による影響は小さいと考えられます。

1) 環境保全措置

渓流的な川、平野を流れる川、筑後川中流域、貯水池については、渓流的な川及び筑後川中流域の一部が改変されるものの、大部分は残存するため、事業による影響は小さいと予測されました。また、事業後の水質、水温、河床材料、流況、地下水の水位の変化は小さく、取水施設及び放流施設下流河川に生息・生育する生物群集は事業後も維持されると考えられることから、典型性(河川域)に対しては環境保全措置を実施しません。

2) その他の配慮事項

環境保全措置とは別に、環境への配慮として以下の項目を行います。

① 外来種の拡散防止

工事箇所の出入りにおけるタイヤ洗浄(付着した植物外来種のタネの除去)、筑後川の出入りにおける作業員の長靴の消毒(外来珪藻の除去)等の拡散防止対策を行い、工事中は外来種を持ち込まない、持ち出さないように留意します。

② モニタリングによる生物生息・生育状況の監視

工事中及び供用後において、魚類、底生動物、付着藻類について、重要な種や外来種を含め、 モニタリング調査を行い、生息・生育状況の把握に努めます。特に供用後の水温については不確 実性を伴うことから、水温の変化に留意しつつモニタリング調査を実施します。 本事業における環境保全への取り組みを進めるにあたっては、「筑後川水系ダム群連携事業環境保全委員会」を構成する以下の委員の方々に審議頂くとともに、多くのご助言を賜りました。改めて感謝申し上げます。

筑後川水系ダム群連携事業環境保全委員会 構成委員

乾 隆帝	福岡工業大学社会環境学部 社会環境学科 教授
小野 仁	日本野鳥の会 福岡支部長
◎古賀 憲一	佐賀大学 名誉教授
嶋田 純	熊本大学 名誉教授
中島 淳	福岡県保健環境研究所 環境生物課 専門研究員
西野 宏	熊本大学 名誉教授
広渡 俊哉	九州大学 名誉教授
真鍋 徹	北九州市立自然史•歷史博物館 館長
山根 明弘	西南学院大学 人間科学部 社会福祉学科 教授
吉田 大塚原 隆夫	国土交通省 九州地方整備局 筑後川河川事務所長

※氏名及び所属は令和7年10月時点のもの。敬称略,五十音順。◎:委員長

以下から環境影響評価の詳細をご覧頂けます。

筑後川水系ダム群連携事業における環境保全への取り組み 本編

 $https://www.water.go.jp/chikugo/asakura/kankyou/pdf/kankyouhozenhenotorikumi_honpen.pdf$

X水資源機構

筑後川上流総合管理所 寺内ダム再生・筑後川水系ダム群連携事業推進室

寺内ダム再生・筑後川水系ダム群連携事業推進室 HP

寺内再生

https://www.water.go.jp/chikugo/asakura/