(No. 1)

ダム名	浦山ダム	調査年(西暦)							No. 1 2020年
ダムコード	2BH	100		200		201	300	301	2020
I am to the		ダム放流				貯水池補助			-there A No. 1.
1 調査地点		(減勢工) 地点		貯水池基準地点		(寄国土) 地点	バイパス取水工	大久保谷	荒川合流点
2 調査月		1		1		1	1	1	1
3 調査日		15		15		15	15	15	15
4 調査開始時刻:時 241	時間制	14	10	10	10	11	9	11	11
5 調査開始時刻:分		2	0	15	50	10	12	25	56
6 天候		曇		雨		曇	雨	曇	曇
7 気温	$^{\circ}$	6. 7		4.0		4.0	3.8	3.8	7.6
8 貯水位	EL. m			392. 13		392. 13	-	-	-
9 流量(河川)	m³/s			-		-	-	-	-
10 流入量(貯水池)	m³/s			0.77		4. 25	=	-	-
11 放流量(貯水池)	m³/s			0.77		0. 29	-	-	-
定其透視度(河川)	ст	27. 0	8.0	8.0	8. 0	3. 0	>100	>100	23. 0
13 透明度(貯水池)	m			0.1		0.1	-	-	-
14 水色				18		17	-	_	-
15 全水深	m	0.44		103		76.0	0.13	_	0.50
16 採水水深	m	表層	0.5	51.5	102.0	0.5	0. 02	0.1	0.1
17 外観		淡黄白濁	濃灰緑濁	濃灰緑濁	濃灰緑濁	濃灰茶濁	淡白色濁	無色透明	淡黄白濁
18 臭気(冷時)	0.5	無臭	無臭	無臭	無臭	無臭	無臭	無臭	無臭
19 水温	$^{\circ}$	7.5	9. 7	9.8	9. 7	9.8	3. 5	4.3	6. 2
20 濁度測定方式		1	1	1	1	1	1	1	1
21 <u>濁度</u> 22 DO	度	89. 4	101.0	96.8	96. 6	98. 5	22. 2	0.3	16. 4
22 DO	mg/L	11. 9	9. 7	9. 7	9.6	9. 7	12. 7	12. 6	12. 9
23 p H	/-	7. 7	7. 5	7. 5	7.5	7. 5	7. 7	7. 7	8. 4
24 BOD	mg/L	0.3	0. 2	0.2	0.3	0.2	0. 2	0.3	0.5
25 COD	mg/L	2. 2	2.0	1.8	2. 1	1.9	0. 9	0.9	1.6
26 S S	mg/L	42. 8	21. 2	17. 7	25. 1	37	21. 7	0.1	14. 7
27 大腸菌群数	MPN/100mL	700	460	490	170	700	170	49	23000
28 糞便性大腸菌群数	個/100mL	2	3	7	3	5	4	<u> </u>	13000
29 総窒素	mg/L	0.824	0.807	0. 836	0.873	0.808	0. 433	0. 589	0.868
30 アンモニウム態窒素	mg/L	-	0. 020	0. 014	0.011	0. 013	0.003	0.006	
31 亜硝酸態窒素	mg/L	_	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	_
32 硝酸態窒素	mg/L	-	0. 568	0. 567	0. 560	0. 567	0. 328	0. 274	-
33 総リン	mg/L	0. 104	0.095	0. 093	0.095	0. 100	0.046	0.008	0. 034
34 オルトリン酸態リン	mg/L	-	0.015	0.02	0.016	0.013	0.012	0.003	- 0.0
35 クロロフィルa	mg/m³	0.8	<0.1	<0.1	<0.1	<0.1	1.0	1. 1	2. 3
36 トリハロメタン生成能	mg/L	<u> </u>	- /1	-	-	-	<u> </u>	<u> </u>	_
37 2 M I B	ng/L		<1			-			-
38 ジェオスミン 39 フェオフィチンa	ng/L	_	<1 <0. 1	- <0. 1	<0.1	-	<u> </u>	<u> </u>	<u> </u>
	mg/m³		0. 1	0. 018	0. 1	0.011	0, 008		
	mg/L	_	0.015	0. 018 0. 015	0.016	0.011		0.005	
41 溶解性オルトリン酸態リン	mg/L						0.004	<u><0.001</u>	
42 電気伝導度	mS/m	7. 7 0. 017	6. 8 0. 015	6.8 0.014	6. 9 0. 014	6.8 0.014	8. 7 0. 003	7. 0 0. 001	12. 3 0. 003
43 亜鉛 44 鉄	mg/L	0.017	3. 232	3. 275	3. 362	0.014	0.003	0.001	0.003
	mg/L	0. 175	0. 132	3. 275 0. 133	0. 156				
45 マンガン 46 ケイ素	mg/L	0.175	0. 132 10. 0						=
46 クイ系 47 ケイ素(溶存態)	mg/L	_		13. 0	14.0	21.0	4.6	5. 1 5. 0	=
	mg/L	_	4. 5 <0. 06	4. 5	4. 5 -	4.6	4.3	5.0	_
48 ノニルフェノール 49 LAS	mg/L	_	0.007	_		=	_		_
1 49 ILAS	mg/L	_	0.0007	_	_	_	_	_	_

備考: 1.調査結果の数値の取扱いについては、貯水池水質調査データ処理マニュアル(案)平成13年12月 水資源開発公団版に従った。 2.表中の一印は測定を行ってない事を示す。 3.貯水位、流量等は各地点の調査開始時刻の値を記載した。

(No. 1)

対土・	ダム名	浦山ダム	調査年(西暦)							(No. 1) 2020年
調要性点	, F	11141 17	17.4		200		201	300	301	2020
	i i	2011								
3 開発日 5	1 調査地点				貯水池基準地点			バイパス取水工	大久保谷	荒川合流点
3 調査目除時刻 跨 2 時間	2 調査月		2		2		2	2	2	2
5 調産開始的類:分			5		5		5	5	5	
5 調産開始的類:分	4 調査開始時刻:時 24	4時間制	9	9	9	10	10	9	10	10
6 突破			03	25	35	00	30	37	50	24
7			睛	U.	晴		晴		晴	
8 昨水位 日本 一		$^{\circ}$ C	1.4		5. 0			2. 7	4.0	0. 4
9 液産(呼水池) m'/s		EL. m	-		393. 02		_	_	_	_
11 放流 (日本) 1.02			1.02		_		_	_	-	-
12	10 流入量(貯水池)	m³/s	_		1. 02		_	_	-	_
13 透明度(肝水池) m	11 放流量(貯水池)	m³/s	_		1. 02		_	_	-	-
13 透明度(肝水池)	12 诱視度(河川)	ст	8. 0	8.0	8. 0	8. 0	9. 0	86.0	>100	87. 0
15 全水深 m	13 透明度(貯水池)	m	=		0. 1		0. 1	-	=	-
15 全水深			-		15		15	-	-	-
16 除水水深 一次 表層 0.5 52.5 104.0 0.5 0.07 0.1 0.0 7 外観 演日 演長 無泉 無泉 無泉 無泉 無泉 無泉 無泉 無	15 全水深	m	4.50		105.0		78. 0	0.35	=	0.4
17 外観 黄白海 漆灰木海 漆灰木海 淡灰木海 淡灰木海 淡皮木海 淡皮木海 淡皮木海 紫皮 無臭 無臭 無臭 無臭 無臭 無臭 無臭 無	16 採水水深	m	表層	0.5	52. 5	104.0	0.5	0.07		0.08
19 水湿 で	17 外観		黄白濁	濃灰茶濁		濃灰茶濁		淡白色透		淡白色透
20 画度測定方式	18 臭気(冷時)		無臭	無臭	無臭	無臭	無臭	無臭	無臭	無臭
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$^{\circ}$	6.9	8.8	8. 7	8.6	8.9	2.6	2.9	4.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 濁度測定方式		1	1	1	1	1	1	1	1
23 D H	21 濁度	度	68.3	76.4	77. 6	76.5	72.8	5.8		3.6
23 D H	22 DO	mg/L	11.0	11.2	10.0	10.0	10.4	12.9	12.9	12.8
25 COD	23 p H		7.6	7.6	7.6	7.6	7.6	7. 7	7. 7	8.0
26 S S mg/L 24.6 23.6 24.2 29.2 22.6 8.0 1.0	24 BOD	mg/L		0.2	0.2	0.3	0.2		0.2	0.1
27 大腸菌群数 MPN/100mL 490 230 230 330 330 33 23 3300 328 後便性大腸菌群数 Mg/L 0.638 0.656 0.726 0.629 0.653 0.419 0.357 0.000 0.00	25 COD									0.8
28 養便性大腸菌群数 個/100mL 1 2 2 - 1 〈1 1 640 29 総窒素 mg/L 0.638 0.656 0.726 0.629 0.653 0.419 0.357 0. 30 アメモット整電素 mg/L - 0.011 0.010 0.066 0.009 0.005 0.005 - 31 距硝酸態窒素 mg/L - (0.001 〈0.002 ん0.36 0.362 0.309 人0.002 ん0.36 0.009 0.007 人0.007 人0.002 ん0.36 0.009										1.5
29 総金素			490				330		23	
30 プルモウル艦電素 mg/L			1				1		1	
1 単硝酸態窒素 mg/L		(7)								0.490
32 耐酸態窒素										=
33 総別										
34 かり変態リン mg/L	32 俏酸態窒素									-
35 / フロフィルa mg/m³ 〈0.1 (0.1 (0.1) (0.1 (0.1) (0.1) (0.1) (0.1) (0.1) ((7)								0.023
36 リハルタ 生成能 mg/L										- 0.1
37 2M I B		,								0.1
38 ジェオスミン ng/l - - -										-
39 フェオフィチンa mg/m³ -										_
40 溶解性総リン mg/L - 0.012 0.012 0.013 0.017 0.009 0.009 41 溶解性総リン mg/L - 0.020 0.016 0.013 0.020 0.008 0.006 42 電気伝導度 mS/m mg/L 6.9 6.9 7.0 6.9 6.9 7.8 6.6 13. 43 亜鉛 mg/L 0.013 0.011 0.012 0.013 0.012 0.002 <0.001										_
41 溶解性オルリン酸態リン mg/L - 0.020 0.016 0.013 0.020 0.008 0.006 42 電気伝導度 mS/m 6.9 6.9 7.0 6.9 6.9 7.8 6.6 13. 43 亜鉛 mg/L 0.013 0.011 0.012 0.013 0.012 0.002 <0.001		· .								
42 電気伝導度 mS/m										
43 亜鉛 mg/L 0.013 0.011 0.012 0.013 0.012 0.002 <0.001										
44 鉄 mg/L - 2.531 2.591 2.795 - - - - - 45 マンガン mg/L 0.100 0.098 0.100 0.122 - - - - - 46 ケイ素 mg/L - 15 15 14 16 5.6 5.1 - 47 ケイ素(溶存態) mg/L - 4.2 4.3 4.1 4.5 4.5 4.6 -										13. 0 <0. 001
45 マンガン mg/L 0.100 0.098 0.100 0.122 - - - - - 46 ケイ素 mg/L - 15 15 14 16 5.6 5.1 - 47 ケイ素(溶存態) mg/L - 4.2 4.3 4.1 4.5 4.5 4.6 -		~ .								- \(\tau_0.001
46 ケイ素 mg/L - 15 15 14 16 5.6 5.1 - 47 ケイ素(溶存態) mg/L - 4.2 4.3 4.1 4.5 4.5 4.6 -										
47 ケイ素(溶存態) mg/L - 4.2 4.3 4.1 4.5 4.5 4.6 -										
$\begin{bmatrix} 48 \\ J = \nu J = 1 \end{bmatrix}$ $ \begin{bmatrix} - \\ 0.00006 \\ - \end{bmatrix}$ $ \begin{bmatrix} - \\ -$				4. Z <0. 00006						
49 LAS				0.0000	-	=	=	-	_	=

備考: 1.調査結果の数値の取扱いについては、貯水池水質調査データ処理マニュアル(案)平成13年12月 水資源開発公団版に従った。 2.表中の一印は測定を行ってない事を示す。 3.貯水位、流量等は日平均値を記載した。

(No. 1 2020年 ダム名 浦山ダム 調査年 (西暦) ダムコード 2BH 100 200 201 300 301 ダム放流 貯水池補助 バイパス取水工 調査地点 貯水池基準地点 大久保谷 荒川合流点 (減勢工) 地点 (寄国土) 地点 2 調査月 3 調査日 4 4 4 4 4 調査開始時刻:時 24時間制 10 10 9 9 9 9 10 9 50 調查開始時刻:分 3 25 30 10 42 20 40 6 天候 曇 曇 曇 曇 曇 曇 7 気温 $^{\circ}$ C 7.2 5.0 5.0 7. 1 5.0 8.0 貯水位 393.02 8 EL. m 9 流量(河川) m^3/s 0.82 10 流入量(貯水池) 0.82 m^3/s 11 放流量(貯水池) m^3/s 0.82 12 透視度(河川) 23 8 8 >100 >100 79 c m 10 8 13 透明度(貯水池) 0.1 0.1 m _ 14 水色 15 15 15 全水深 2.45 105.0 78.0 0.24 0.40 m 16 採水水深 m 0.5 52.5 104.0 0.5 0.04 0.08 17 外観 黄白濁 濃灰茶濁 濃灰茶濁 濃灰茶濁 濃灰茶濁 無色透明 無色透明 淡白透 18 臭気(冷時) 19 水温 $^{\circ}$ C 8.8 6.6 6.5 8.0 7.9 8.7 4.6 5.5 20 濁度測定方式 21 濁度 22 DO 23 pH 度 22.8 59. 1 59.1 57. 1 62.1 0.6 0.1 4.6 mg/L 11.8 10.9 10.5 10.3 11.4 12.9 12.6 12.5 7.8 7.7 7.7 7.7 7.7 7.9 7.8 8.2 24 BOD mg/L 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.3 25 COD 1.1 1.6 1.7 1.7 1.6 0.8 0. 9 0.8 mg/L 26 S S 7.3 15.4 16.0 17.2 17.0 0.3 <0.1 2.9 mg/L MPN/100mI 27 大腸菌群数 130 79 79 330 110 49 23 790 28 糞便性大腸菌群数 個/100mL 10 29 総窒素 0.426 0.627 0.585 0.640 0.600 0.599 0.560 0.538 mg/I 30 アンモニウム熊窒素 0.004 0, 008 0.010 0.004 <0.001 <0.001 mg/L 31 亜硝酸態窒素 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 _ _ mg/L 32 硝酸態窒素 0.578 0.575 0.274 mg/L 0.583 0.558 0.358 33 総リン mg/L 0.045 0.063 0.0760.081 0.067 0.014 0.020 0.019 34 オルトリン酸態リン mg/L 0.018 0.024 0.016 0.021 0.012 0.010 クロロフィルa <0.1 <0.1 <0.1 0.1 0.3 0.4 mg/m³ < 0. < 0. 36 トリハロメタン生成能 mg/L 37 2 M I B <1 ng/L 38 ジェオスミン <1 ng/I 39 フェオフィチンa <0.1 <0. <0.1 mg/m³ _ 40 溶解性総リン 0.015 0.022 0.020 0.015 0, 013 0.013 mg/L 41 溶解性オルトリン酸熊リン 0.013 0.015 0.013 0.008 0.010 0.007 mg/L 42 電気伝導度 mS/m 8.3 7.1 7.7 7. 1 7.6 9.3 7.4 14.1 43 亜鉛 0.006 0.017 0.011 0.014 0.013 <0.001 <0.001 0.008 mg/L 44 鉄 1.996 2.197 2.304 mg/I 45 マンガン 0.038 mg/I 0.077 0.088 0.102 46 ケイ素 7.6 8. 1 10.0 5.5 5. 2 5. 5 _ mg/I 47 ケイ素(溶存態) 4.6 4.8 4.7 4.6 4.5 5.0 mg/I 48 ノニルフェノール <0.06 _ _ mg/L _ _ _ 49 I <0.0001 LAS

備考: 1.調査結果の数値の取扱いについては、貯水池水質調査データ処理マニュアル(案)平成13年12月 水資源開発公団版に従った。

2. 表中の一印は測定を行ってない事を示す。

濁度の測定方式1:積分球式/カオリン標準液

3. 貯水位、流量等は各地点の調査開始時刻の値を記載した。

(No. 1)

ダム名	浦山ダム	調査年(西暦)							(No. 1) 2020年
ダムコード	2BH	100		200		201	300	301	2020
	ZDII	ダム放流				貯水池補助			
1 調査地点		(減勢工) 地点		貯水池基準地点		(寄国土) 地点	バイパス取水工	大久保谷	荒川合流点
2 調査月		4		4		4	4	4	4
3 調査日		8		8		8	8	8	8
4 調査開始時刻:時 2	4時間制	8	9	9	9	10	9	10	10
5 調査開始時刻:分		54	20	25	45	10	35	20	41
6 天候		晴		晴		晴	晴	晴	晴
7 気温	$^{\circ}\!\mathbb{C}$	9. 4		12.0		12. 0	14.8	11.0	17. 5
8 貯水位	EL. m	_		391.15		391. 15	_	_	ı
9 流量(河川)	m^3/s	6.02		_		=	-	-	ı
10 流入量(貯水池)	m³/s	_		2.61		2.61	_	_	ı
11 放流量(貯水池)	m³/s	_		6.02		6.02	_	_	ı
12 透視度(河川)	ст	18	10	10	8	10	>100	>100	18
13 透明度(貯水池)	m	-		0. 2	-	0. 2	_	_	1
14 水色		-		16		16	-	-	1
15 全水深	m	2.64		103.0		75. 0	0, 20	_	0.70
16 採水水深	m	表層	0.5	51. 5	102.0	0. 5	0.04	-	0.14
17 外観		黄白濁	濃灰茶濁	濃灰茶濁	濃灰茶濁	濃灰茶濁	無色透明	無色透明	黄白濁
18 臭気(冷時)		無臭	無臭	無臭	十臭	無臭	無臭	無臭	無臭
19 水温	$^{\circ}$	13. 2	10.0	8.0	8.0	9. 7	12. 3	7. 5	9. 5
20 濁度測定方式	Ŭ	1	1	1	1	1	1	1	1
	度	34. 0	36.0	45.0	58. 0	37. 0	1.4	0.1	31.0
21 <u>濁度</u> 22 DO	mg/L	11.4	10.7	10. 2	9.9	10. 5	11.8	11.6	11.6
23 p H		7. 7	7. 6	7.6	7. 5	7. 6	7.8	7. 7	7.8
24 BOD	mg/L	0.3	0. 2	0.3	0. 2	0. 2	0. 2	0. 2	0. 1
25 COD	mg/L	1.4	1.3	1.3	1.4	1. 3	0.9	1, 1	1.4
26 S S	mg/L	10. 4	7. 5	14. 5	24. 4	10. 7	3.0	0.7	12. 1
27 大腸菌群数	MPN/100mL	33	23	23	23	23	49	23	230
28 糞便性大腸菌群数	個/100mL	<1	<1	<1	<1	2	<1	<1	4
29 総窒素	mg/L	0.655	0, 631	0, 633	0, 636	0.639	0, 450	0.349	0. 628
29 総窒素 30 アンモニウム態窒素	mg/L	-	0, 012	0,006	0,008	0.015	<0.001	<0.001	-
31 亜硝酸態窒素	mg/L	_	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	1
32 硝酸態窒素	mg/L	_	0, 564	0. 577	0. 575	0, 559	0. 424	0. 349	1
33 総リン	mg/L	0,077	0, 053	0.056	0, 075	0.057	0.012	0.010	0, 058
34 オルトリン酸態リン	mg/L	-	0.018	0.024	0.013	0.017	0.009	0.008	-
35 クロロフィルa	mg/m ³	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.4	0. 2
36 トリハロメタン 生成能	mg/L	-	_	_	-	_	_	-	_
37 2 M I B	ng/L	_	<1	_	_	_	_	_	-
38 ジェオスミン	ng/L	_	<1	_	_	_	_	_	1
39 フェオフィチンa	mg/m ³	_	<0.1	<0.1	<0.1	_	_	_	_
40 溶解性総リン	mg/L	_	0.012	0.010	0.013	0.014	0.008	0.007	
41 溶解性オルトリン酸熊リン	mg/L	=	0.007	0.005	0.007	0.007	0.004	0.002	=
42 電気伝導度	mS/m	7.3	7. 2	7. 1	7. 1	7. 2	8. 2	6.8	7. 7
43 亜鉛	mg/L	0.008	0.009	0.008	0.009	0.007	<0.001	<0.001	0.007
44 鉄	mg/L	-	1. 455	1. 759	2. 140	-	-	-	-
45 マンガン	mg/L	0.056	0.059	0, 065	0. 100	_	_	_	-
46 ケイ素	mg/L	-	10.0	8. 4	10.0	7.2	8.1	5. 4	1
47 ケイ素(溶存態)	mg/L	_	4. 3	4. 3	4. 3	4. 2	4. 9	4. 6	-
48 ノニルフェノール	mg/L	_	<0.00006	-	-	-	-	-	
49 LAS	mg/L	=	<0.0000	_	_	=	-	_	_
濁度の測定方式1:積分球	()/	淮 游							

|<u>濁度の測定方式1:積分球式/カオリン標準液</u> |備考: 1. 調査結果の数値の取扱いについては、貯水池水質調査データ処理マニュアル(案)平成13年12月 水資源開発公団版に従った。 | 2. 表中の一印は測定を行ってない事を示す。 | 3. 貯水位、流量等は各地点の調査開始時刻の値を記載した。

(No. 1 2020年 ダム名 浦山ダム 調査年 (西暦) ダムコード 2BH 100 200 201 300 301 ダム放流 貯水池補助 調査地点 貯水池基準地点 バイパス取水工 大久保谷 荒川合流点 (減勢工) 地点 (寄国土) 地点 2 調査月 5 5 3 調査日 13 13 13 13 13 13 調香開始時刻:時 24時間制 9 9 9 10 10 9 11 10 調查開始時刻:分 06 30 40 10 35 50 05 58 6 天候 晴 晴 晴 晴 晴 晴 7 気温 $^{\circ}$ C 26.0 22.0 23.0 23.6 23.0 25.1 貯水位 8 EL. m 381.10 381.10 9 流量(河川) m^3/s _ 0.98 0.98 10 流入量(貯水池) m^3/s 11 放流量(貯水池) m^3/s 3.93 3.93 12 透視度(河川) 28 30 30 >100 >100 c m 18 10 30 13 透明度(貯水池) 0.3 0.5 m 14 水色 13 15 15 全水深 2, 85 92, 00 65.00 0.52 _ 0.43 m 16 採水水深 m 表層 0. 5 46. 0 91.0 0. 5 0.1 0.08 無色透明 無色透明 17 外観 黄白濁 濃灰緑濁 濃灰緑濁 濃灰緑濁 濃灰茶濁 黄白濁 18 臭気(冷時) 無臭 弱土臭 無臭 無臭 無臭 19 水温 $^{\circ}$ C 12.3 8.0 8.0 12.5 12.6 14.0 11.6 13.4 20 濁度測定方式 1 1 21 濁度 22 DO 23 pH 度 27.4 17.1 16.0 48.4 16. 2 0.8 0.6 13. 1 mg/L 10.8 11.3 10.0 8.8 12.0 10.3 10.0 11. 1 7.6 7.8 7.6 7.4 7.8 7.8 7.8 8.0 24 BOD 0.6 1.2 0.4 0.5 2.2 0.8 0.6 0.6 mg/L 25 COD 0.7 1. 7 0. 7 1. 0 2. 4 0.7 0.9 0.8 mg/L 26 S S ${\rm mg}/L$ 4. 9 5. 9 17.6 9.9 0.8 0.6 7.7 4.6 MPN/100mI 27 大腸菌群数 23 33 7.8 7.8 23 33 33 230 28 糞便性大腸菌群数 個/100mL <1 <1 <1 <1 6 4 29 総窒素 0.558 0.560 0.582 0.606 0.718 0.447 0.378 0.519 mg/I 30 アンモニウム熊窒素 0.003 0.003 0.006 0.004 < 0.001 0.002 mg/L _ _ 31 亜硝酸態窒素 0.004 <0.001 <0.001 0.004 <0.001 <0.001 _ _ mg/L 32 硝酸態窒素 0.563 0.435 0.359 mg/L 0.496 0.573 0.442 33 総リン mg/L 0.037 0.0540.051 0.067 0.080 0.019 0.023 0.028 34 オルトリン酸態リン mg/L 0.009 0.017 0.024 0.008 0.013 0.014 クロロフィルa 0.5 11.6 0.1 0.1 33. 3 <0.1 0.3 1.6 mg/m³ 36 トリハロメタン生成能 mg/L 37 2 M I B _ <1 _ _ ng/1 38 ジェオスミン ng/1 <1 39 フェオフィチンa <0.1 <0.1 <0.1 mg/m³ _ 0.1 40 溶解性総リン 0,008 0.015 0.011 0,009 0.016 0.016 mg/L _ 41 溶解性オルトリン酸熊リン 0.006 0.009 0.006 0.007 0.012 0.010 _ mg/L 42 電気伝導度 mS/m 7.3 7.3 7.2 7.3 7.4 8.6 7.0 9.4 43 亜鉛 0.004 0.005 0.006 0.007 0.004 <0.001 <0.001 0.003 mg/I 44 鉄 0.692 1.089 1.670 mg/I 45 マンガン 0.027 0.025 mg/I 0.038 0.074 46 ケイ素 6.7 7. 0 8.2 6. 2 5. 9 6.4 _ mg/I 47 ケイ素(溶存態) _ 4.4 4.2 4.0 4.7 4.9 5.3 mg/I 48 ノニルフェノール _ <0.00006 _ _ mg/L _ _ 49 I 0.0007 LAS

構考: 1. 調査結果の数値の取扱いについては、貯水池水質調査データ処理マニュアル(案)平成13年12月 水資源開発公団版に従った。

2. 表中の一印は測定を行ってない事を示す。

3. 貯水位、流量等は日平均値を記載した。

濁度の測定方式1:積分球式/カオリン標準液

(No. 1 2020年 ダム名 浦山ダム 調査年 (西暦) ダムコード 2BH 100 200 201 300 301 ダム放流 貯水池補助 調査地点 貯水池基準地点 バイパス取水工 大久保谷 荒川合流点 (減勢工) 地点 (寄国土) 地点 2 調査月 6 6 6 6 3 調査日 3 3 3 3 3 3 調香開始時刻:時 24時間制 9 9 9 10 10 9 10 10 調查開始時刻:分 05 30 40 20 30 54 50 42 6 天候 晴 晴 晴 晴 晴 晴 7 気温 $^{\circ}$ C 24. 5 24.0 25.0 21.8 24.0 29.5 貯水位 8 EL. m 377.05 377.05 9 流量(河川) m^3/s 10 流入量(貯水池) _ 1.66 1.66 m^3/s 11 放流量(貯水池) m^3/s 2.99 2.99 _ 12 透視度(河川) 55 25 15 68 >100 c m 60 >100 61 13 透明度(貯水池) 0.7 0.9 m 14 水色 5 5 15 全水深 0.73 3.60 88. 0 60.0 0.80 0.10 m 16 採水水深 m 表層 0. 5 44. 0 87. 0 0. 5 0. 2 0.0 0.15 無色透明 17 外観 淡白透 濃灰緑透 濃灰緑濁 濃灰緑濁 濃灰緑透 無色透明 淡白透 18 臭気(冷時) 無臭 無臭 無臭 無臭 無臭 19 水温 $^{\circ}$ C 15. 2 16.5 14.5 14.6 8. 1 8.1 15.0 14.5 20 濁度測定方式 1 1 21 濁度 22 DO 23 pH 度 23.0 38. 1 9.3 7.7 6. 5 1.3 0.5 6. 5 mg/L 11.0 10.9 9.8 7.5 11.6 10.0 9.7 10.3 7.6 7.8 7.6 7.4 7.8 7.8 7.8 8.0 24 BOD 0.3 0.9 0.5 0.7 1.6 0.2 0.3 0.3 mg/L 25 COD 0.8 1. 2 0. 9 1.4 1. 6 0.1 0.8 0.7 mg/L 26 S S ${\rm mg}/L$ 4.0 4.3 5. 5 15. 9 5.8 0.6 0.4 2.8 MPN/100mI 27 大腸菌群数 33 11 13 23 79 130 110 790 28 糞便性大腸菌群数 個/100mL <1 <1 1 <1 <1 8 67 3 29 総窒素 0.754 0.642 0.636 0.666 0.694 0.475 0.322 0.645 mg/I 30 アンモニウム熊窒素 0.005 0.009 0.015 0.004 0.005 <0.001 mg/L _ _ 31 亜硝酸態窒素 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 _ _ mg/L 32 硝酸態窒素 0.562 0.319 mg/L 0.4740.587 0.451 0.453 33 0.022 総リン mg/L 0.035 0.052 0.086 0.031 0.023 0.0240.027 34 オルトリン酸態リン mg/L 0.011 0.040 0.053 0.009 0.016 0.015 クロロフィルa 1. 1 3. 1 <0.1 <0.1 11. 1 0.1 0.3 0.9 mg/m³ 36 トリハロメタン生成能 mg/L 37 2 M I B _ <1 _ _ ng/1 38 ジェオスミン ng/1 <1 _ 39 フェオフィチンa <0.1 <0.1 mg/m³ _ 0.1 40 溶解性総リン 0.011 0.024 0.015 0,009 0.018 0.017 mg/L _ 41 溶解性オルトリン酸熊リン 0.003 0.018 0.011 0.003 0.015 0.014 _ _ mg/L 42 電気伝導度 mS/m 7.5 7.5 7.2 7.3 7.0 8.9 7.1 9.3 43 亜鉛 0.002 0.003 0.006 0.007 0.002 0.001 <0.001 0.001 mg/I 44 鉄 0.272 0.993 1.352 mg/I 45 マンガン 0.012 0.033 mg/I 0.011 0.059 46 ケイ素 5. 2 7.7 9.2 5. 1 7.4 6. 9 _ mg/I 47 ケイ素(溶存態) 4.7 4. 5 4.4 4.7 5. 2 5.5 mg/I 48 ノニルフェノール _ <0.00006 _ mg/L _ _ _ 49 I 0.0012 LAS 濁度の測定方式1:積分球式/カオリン標準液

請考: 1.調査結果の数値の取扱いについては、貯水池水質調査データ処理マニュアル(案)平成13年12月 水資源開発公団版に従った。

2. 表中の一印は測定を行ってない事を示す。

3. 貯水位、流量等は日平均値を記載した。

(No. 1)

対数型性 10 20 20 20 20 20 20 20	ダムタ	7,	浦山ダム	調査年 (西暦)							2020年
国産組合 サム酸素 サ大酸塩等性素 野大酸塩等性素 野大酸塩等性素 野大酸塩 野大酸 野大酸塩 野大阪 野大						200		201	300	301	2020
別報子 15 15 15 15 15 15 15 15	1 調	· 問査地点		ダム放流				貯水池補助			荒川合流点
3 養住 15	2 調	哥杏月				7			7	7	7
新産原始時間:				15		15		15	15		
5 高度照換時間: 分			時間制		9		10				
C 大統			a liedulia								
対称性 1					10		00				
	7 复	[温	$^{\circ}$ C								
所様 (河外) m'/s -		- ・ ・ 水位									
10 成人株 (野水和) m/s -				_					_	_	_
1			,	_		3 12		3 12	_	_	_
12 透視度(河川) cm 73 89 40 20 65 2)100 2)100 83 3 透視度が未削 m -	0.0			_					_	_	_
13 透明度的水池 m 一 1.0 0.8 一 一 一 一 一 一 一 15 全水深 m 2.65 83.0 55.0 0.35 0.15 0.76 16 径水深 m 表間 反政流 反流流 反政流				73	80		20		>100	>100	83
14 外色	13 透	是明度(貯水油)			- 00		20				
15 全水深 m 2,65	14 7k	く名 (*1/ハロビ)	111								
16 株水水栗			m								
17 外線 終白透 疾経透 疾経透 疾経透 疾経透 疾経透 疾経透 疾経透 疾経透 疾経 疾炎 無臭 無臭 無臭 無臭 無臭 無臭 無臭 無					0.5		82 0				
18 泉(冷雨) 無泉 無泉 無泉 無泉 無泉 無泉 無泉 無	17 4	N/N/N/N L 組	111								
19 水温											
1			%	7111.75		7111/5				711175	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			C	10.0		1	1		14. 4	10.0	
22 D O mg/L 9,6 9,8 8,6 6,8 9,3 9,8 8,7 9,5	91 渥	明文例 <i>に</i> 刀八 	┢	2 N		17.0	33 4	_	3 0	0.4	1
23 p H			~ ~								
Ad B O D mg/L 0.3 0.6 0.3 0.4 0.7 0.3 0.2 0.3			IIIg/ L								
55 COD mg/L 0.5 0.9 0.6 0.9 0.9 0.3 0.3 0.9 0.5			mar /I								
26 S S mg/L 4.4 3.6 6.6 19.6 5.2 3.5											
27 大腸菌群数 MPV/100mL 94 79 23 79 79 330 330 3300 3300 28 養便性大腸菌群数 MB/100mL く1 1 1 1 4 15 31 35 30 アンモリ体窒素 mg/L - 0.020 0.010 0.011 0.019 0.004 0.001 - 30 アンモリ体態窒素 mg/L - 0.020 0.010 0.011 0.019 0.004 0.001 - 31 世前酸能窒素 mg/L - 0.004 0.001 0.001 0.001 0.001 0.001 - 33 総別 mg/L - 0.444 0.573 0.561 0.469 0.540 0.432 - 4 かりで酸酸別 mg/L - 0.002 0.007 0.011 0.002 0.025 0.022 0.023 0.023 3											
28 養便性大腸菌群数 個/100mL											
29 総密素 mg/L 0.512 0.579 0.607 0.668 0.596 0.576 0.451 0.736 30 72年74 能望素 mg/L - 0.020 0.010 0.011 0.019 0.004 0.001 - 31 世前酸能窒素 mg/L - 0.004 0.001 0.001 0.001 - 32 前酸能窒素 mg/L - 0.444 0.573 0.561 0.469 0.540 0.432 - 33 総別 mg/L 0.018 0.019 0.041 0.062 0.025 0.022 0.023 0.023 34 が月少酸糖別 mg/L - 0.002 0.007 0.011 0.002 0.015 0.011 - 35 プロロフィルa mg/m² 0.5 1.8 <0.1						1	10				
30 アキール能窒素 mg/L - 0.020 0.010 0.011 0.019 0.004 0.001 - 31 亜硝酸能窒素 mg/L - 0.004 (0.001 0.001 0.003 (0.001 (0.001 - 32 硝酸能窒素 mg/L - 0.444 0.573 0.561 0.469 0.540 0.432 - 33 後川 mg/L 0.018 0.019 0.041 0.062 0.025 0.022 0.023					_	0.607	0.668				
正明酸態窒素 mg/L											
32 前酸態窒素											
33 終リン	30 程	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1									
34											
35 クロロフィルa mg/m³ 0.5 1.8											
36											0.3
37 2 M I B			,								
38 ジェオスミン ng/l -											
39 フェオフィチンa mg/m³ -											
40 溶解性総リン mg/L - 0.004 0.013 0.008 0.007 0.020 0.016 - 41 溶解性制ルリン酸態リン mg/L - 〈0.001 0.007 0.004 0.001 0.010 - 人2 電気伝導度 mS/m 7.9 7.9 7.3 7.4 7.8 7.6 6.8 9.8 43 亜鉛 mg/L 0.001 0.002 0.004 0.007 0.002 0.001 0.003 0.001 44 鉄 mg/L - 0.179 0.676 1.160											
41 溶解性がりン酸態リン mg/L - 〈0.001 0.007 0.004 0.001 0.010 0.010 - 42 電気伝導度 mS/m 7.9 7.9 7.3 7.4 7.8 7.6 6.8 9.8 43 亜鉛 mg/L 0.001 0.002 0.004 0.007 0.002 0.001 0.003 0.001 44 鉄 mg/L - 0.179 0.676 1.160											
42 電気伝導度 mS/m 7.9 7.9 7.3 7.4 7.8 7.6 6.8 9.8 43 亜鉛 mg/L 0.001 0.002 0.004 0.007 0.002 0.001 0.003 0.001 44 鉄 mg/L - 0.179 0.676 1.160											
43 亜鉛 mg/L 0.001 0.002 0.004 0.007 0.002 0.001 0.003 0.001 44 鉄 mg/L - 0.179 0.676 1.160 - - - - - 45 マンガン mg/L 0.018 0.011 0.029 0.081 - - - - - 46 ケイ素 mg/L - 7.6 7.4 12 6.2 5.5 5.2 - 47 ケイ素(溶存態) mg/L - 4.2 4.3 3.8 4.5 5.2 5.1 - 48 ノニルフェノール mg/L - - - - - - - 49 LAS mg/L - 0.0016 - - - - - - -											
44 鉄 mg/L - 0.179 0.676 1.160	42 甩	<u> 3 AV AV 予久</u> F弘									
45 マンガン mg/L 0.018 0.011 0.029 0.081 - - - - - 46 ケイ素 mg/L - 7.6 7.4 12 6.2 5.5 5.2 - 47 ケイ素(溶存態) mg/L - 4.2 4.3 3.8 4.5 5.2 5.1 - 48 ノニルフェノール mg/L - - - - - - - 49 LAS mg/L - 0.0016 - - - - - -											
46 ケイ素 mg/L - 7.6 7.4 12 6.2 5.5 5.2 - 47 ケイ素(溶存態) mg/L - 4.2 4.3 3.8 4.5 5.2 5.1 - 48 ノニルフェノール mg/L - - - - - - - - 49 LAS mg/L - 0.0016 - - - - - - -											
47 ケイ素(溶存態) mg/L - 4.2 4.3 3.8 4.5 5.2 5.1 - 48 ノニルフェノール mg/L - <0.00006											
48 / ニルフェノール mg/L - <0.00006											
49 LAS mg/L - 0.0016											
					0.0010	<u> </u>		<u> </u>			

濁度の測定方式1:積分球式/カオリン標準液 備考: 1.調査結果の数値の取扱いについては、貯水池水質調査データ処理マニュアル(案)平成13年12月 水資源開発公団版に従った。 2.表中の一印は測定を行ってない事を示す。 3.貯水位、流量等は日平均値を記載した。

(No. 1)

ダム名	浦山ダム	調杳年 (西曆)							(No. 1) 2020年
ダムコード	2BH	100		200		201	300	301	
Í		ダム放流				貯水池補助			
1 調査地点		(減勢工) 地点		貯水池基準地点		(寄国土) 地点	バイパス取水工	大久保谷	荒川合流点
2 調査月		8		8		8	8	8	8
3 調査日		5		<u>o</u>		5	5	<u>o</u>	5
4 調査開始時刻:時 2	41年間生	8	9	9	10	10	9	10	10
5 調査開始時刻:分	在时间间	55	20	30	00	30	28	45	53
6 天候		晴	20	 晴	00	晴	晴	 晴	晴
7 気温	$^{\circ}\! \mathbb{C}$	26. 2		31.0		31. 0	24. 5	30. 0	30. 3
8 貯水位	EL. m			372. 00		372.00		-	-
9 流量(河川)	m³/s	_		-		-	_	_	_
10 流入量(貯水池)	m³/s	_		3. 12		3. 12	_	_	_
11 放流量(貯水池)	m³/s	_		3. 12		3. 12	_	_	_
12 透視度(河川)	c m	65	95	45	20	70	>100	>100	68
13 透明度(貯水池)	m	_	30	1. 3	20	1. 0	-	-	_
14 水色	111	_		5		5	_	_	_
15 全水深	m	2.75		86.0		56. 0	0, 46	0, 08	0.77
16 採水水深	m	表層	0, 5	43. 0	85. 0	0.5	0. 09	0.00	0.17
17 外観	111	淡白透	灰緑透	灰茶濁	灰茶濁	灰緑透	無色透明	無色透明	淡白透
18 臭気(冷時)		無臭	無臭	弱土臭	土臭	無臭	無臭	無臭	無臭
19 水温	$^{\circ}$ C	19.8	20.6	8. 1	8. 2	20. 5	16.8	18. 2	18.3
20 濁度測定方式	Ü	1	1	1	1	1	1	1	1
21 濁度	度	8, 1	5. 3	13.6	30. 3	6.8	2. 2	0.3	6. 9
22 DO	mg/L	9. 8	10. 9	8. 0	5. 5	10.8	9. 6	8. 2	9. 4
23 p H	mg/ E	7. 5	7. 8	7. 4	7. 3	7. 7	7. 8	7. 4	8. 0
24 BOD	mg/L	0. 7	1. 1	0. 4	0. 6	1. 0	0. 3	0. 2	0, 3
25 COD	mg/L	1. 1	1. 7	1. 3	1. 7	1. 4	0. 5	0, 6	1. 3
26 S S	mg/L	5, 2	3. 4	6. 2	17. 5	4. 4	1.8	<0.1	4. 4
27 大腸菌群数	MPN/100mL	230	79	23	170	790	1700	490	2800
28 糞便性大腸菌群数	個/100mL	1	<1	<1	4	<1	4	1	48
29 総窒素	mg/L	0, 507	0. 540	0, 590	0, 668	0.508	0.472	0.402	0, 505
30 アンモニウム態窒素	mg/L		0.012	0.014	0. 021	0.004	<0.001	<0.001	
31 亜硝酸態窒素	mg/L		0.005	<0.001	<0.001	0,005	<0.001	<0.001	
32 硝酸態窒素	mg/L		0. 413	0, 551	0. 541	0, 406	0.470	0.400	
33 総リン	mg/L	0.019	0. 023	0.030	0.054	0.018	0. 023	0.018	0.023
34 オルトリン酸態リン	mg/L		0.004	0.008	0.010	0.009	0.016	0.015	
35 クロロフィルa	mg/m^3	0.9	4. 4	<0.1	<0.1	5. 7	<0.1	<0.1	0.3
36 トリハロメタン生成能	mg/L								
37 2 M I B	ng/1		<1						
38 ジェオスミン	ng/1		<1						
39 フェオフィチンa	mg/m^3		<0.1	<0.1	<0.1				
40 溶解性総リン	mg/L		0.010	0.012	0.008	0.010	0.019	0.017	
41 溶解性オルトリン酸態リン	mg/L		0.002	0.008	0.006	0.003	0.016	0.015	
42 電気伝導度	mS/m	7. 5	7. 5	7.3	7. 5	7. 5	7. 5	8. 5	10.7
43 亜鉛	mg/L	0.001	0.002	0.003	0.011	0.002	<0.001	0.014	0.001
44 鉄	mg/L		0.170	0.496	0.992				
45 マンガン	mg/L	0.012	0.007	0.021	0.060				
46 ケイ素	mg/L		5. 5	6. 1	5. 5	5. 6	5. 3	6. 1	
47 ケイ素(溶存態)	mg/L		4. 5	4. 4	4. 2	4. 7	5. 2	5. 7	
48 ノニルフェノール	mg/L		<0.00006						
49 LAS	mg/L		0.0001						
濁度の測定方式1:積分球	:式/カオリン標	準液							

|濁度の測定方式1:積分球式/カオリン標準液 備考: 1. 調査結果の数値の取扱いについては、貯水池水質調査データ処理マニュアル(案)平成13年12月 水資源開発公団版に従った。 2. 表中の一印は測定を行ってない事を示す。 3. 貯水位、流量等は日平均値を記載した。

(No. 1 ダム名 浦山ダム 調査年 (西暦) 2020年 ダムコード 2BH 100 200 201 300 301 ダム放流 貯水池補助 調査地点 貯水池基準地点 バイパス取水工 大久保谷 荒川合流点 (減勢工) 地点 (寄国土) 地点 2 調査月 9 9 9 9 3 調査日 2 2 調香開始時刻:時 24時間制 9 9 9 9 9 9 10 10 調查開始時刻:分 05 10 20 40 55 45 15 45 6 天候 曇 曇 曇 曇 曇 曇 7 気温 $^{\circ}$ C 24.0 24.0 25.0 22. 5 24.0 25.3 貯水位 370.99 8 EL. m 370.99 9 流量(河川) m^3/s 0.73 0.73 10 流入量(貯水池) _ _ m^3/s 11 放流量(貯水池) m^3/s _ 0.73 0.73 _ 12 透視度(河川) >100 53 22 >100 >100 c m 80 >100 93 13 透明度(貯水池) 3. 7 2.8 m _ _ 14 水色 4 4 15 全水深 2, 50 83. 00 0.52 54.00 0.60 0.11 m 16 採水水深 m 表層 0. 5 41. 5 82. 0 0. 5 0.12 0.02 0.10 17 外観 炎白黄透 炎灰緑透 淡灰黄透 淡灰黄濁 炎灰緑透 無色透明 無色透明 淡白透 18 臭気(冷時) 弱土臭 無臭 無臭 弱川藻臭 19 水温 $^{\circ}$ C 23.6 8.3 23.6 19.3 20.2 14.8 8.2 19.5 20 濁度測定方式 1 1 21 濁度 22 DO 23 pH 度 23.8 6.8 1.3 8. 5 2.7 0.5 0.3 2.4 mg/L 9.4 9.0 7.4 5. 1 8.9 8.6 9.1 9.6 7.4 7.7 7.3 7.1 7.7 7.9 7.9 8.4 24 BOD 0.3 0.5 0.3 0.4 0.4 0.3 0.3 0.7 mg/L 25 COD 1. 0 1. 2 0. 9 1.4 1. 0 0. 6 0.8 1. 5 mg/L 3. 5 26 S S 1. 2 4. 5 16.3 2. 2 <0.1 0.5 2.5 mg/L MPN/100mI 27 大腸菌群数 490 330 49 220 230 2200 2300 7900 28 糞便性大腸菌群数 個/100mL <1 <1 1 <1 10 40 88 29 総窒素 0.511 0.772 0.866 0.768 0.714 0.482 0.344 0.649 mg/I 30 アンモニウム熊窒素 0.017 0.010 0.007 0.020 0.004 0.004 mg/L _ _ 31 亜硝酸態窒素 0.014 <0.001 <0.001 0.014 <0.001 <0.001 _ _ mg/L 32 硝酸態窒素 0.537 0.335 mg/L 0.403 0.568 0.396 0.476 33 0.033 総リン mg/L 0.016 0.006 0.020 0.010 0.021 0.019 0.013 34 オルトリン酸態リン mg/L 0.001 0.005 0.003 0.001 0.016 0.015 クロロフィルa 0.2 <0.1 <0.1 2.6 0.1 0.2 1. 5 mg/m³ 1.7 36 トリハロメタン生成能 mg/L 37 2 M I B _ <1 _ _ ng/1 _ 38 ジェオスミン ng/1 _ <1 _ _ _ _ 39 フェオフィチンa <0.1 <0.1 <0.1 mg/m³ _ _ _ _ 40 溶解性総リン 0.003 0.009 0.007 0.008 0.019 0.018 mg/L _ _ 41 溶解性オルトリン酸熊リン 0.001 0.004 0.002 0.001 0.014 0.012 _ _ mg/L 42 電気伝導度 mS/m 7.6 7.9 7.4 7.7 8.0 9.2 7.3 13.8 43 亜鉛 0.001 0.002 0.002 0.003 0.001 <0.001 <0.001 <0.001 mg/I 44 鉄 0.085 0.322 0.788 mg/I 45 マンガン 0.017 0.009 mg/I 0.020 0.091 46 ケイ素 5. 7 5. 4 10 9.3 11 6.0 _ _ mg/I 47 ケイ素(溶存態) 3. 9 3. 7 3.8 3.9 4.8 4.6 mg/I 48 ノニルフェノール <0.00006 _ mg/L _ _ _ 49 I 0.0003 LAS _

構考: 1. 調査結果の数値の取扱いについては、貯水池水質調査データ処理マニュアル(案)平成13年12月 水資源開発公団版に従った。

2. 表中の一印は測定を行ってない事を示す。

3. 貯水位、流量等は日平均値を記載した。

濁度の測定方式1:積分球式/カオリン標準液

ダム名	浦山ダム	調査年(西暦)							(No. 1) 2020年
ダムコード	2BH	100		200		201	300	301	2020
1 調査地点	3311	ダム放流 (減勢工) 地点		貯水池基準地点		貯水池補助 (寄国土) 地点	バイパス取水工	大久保谷	荒川合流点
2 調査月		10		10		10	10	10	10
3 調査日		7		7		7	7	7	7
4 調査開始時刻:時	24時間制	13	12	12	13	13	13	14	11
5 調査開始時刻:分		39	40	50	30	50	06	00	45
6 天候		曇		曇		曇	曇	曇	曇
7 気温	$^{\circ}$	18.0		21.0		21.0	17. 5	19.0	20.0
8 貯水位	EL. m	_		373. 28		373. 28	_		_
9 流量(河川)	m³/s	_		_		_	_	_	_
10 流入量(貯水池)	m³/s	_		0.94		0.94	_	_	_
11 放流量(貯水池)	m³/s	_		0. 73	T	0.73	_	_	_
12 透視度(河川)	c m	51	43	57	20	55	>100	>100	97
13 透明度(貯水池)	m	_		0.7		0.8	_		_
14 水色		_		4		4	-		_
15 全水深	m	2. 35		85. 00	04.3	56. 00	0. 27	0.56	0. 35
16 採水水深	m	表層	0.5	42.5	84.0	0.5	0.05	0.10	0.06
17 外観		淡白透	淡灰緑濁	淡灰褐透	淡灰褐濁	淡灰緑透	無色透明	無色透明	<u>淡白透</u>
18 臭気(冷時)	°C	無臭	無臭	無臭	弱土臭	無臭	無臭	無臭	無臭
19 水温	C	13. 5	20. 2	8. 4	8. 2	20. 0	13. 8	14. 0	15. 5
20 濁度測定方式	度	11.5	11.7	1	10.0	1	1	1	1
21 <u>濁度</u> 22 DO		11. 5 9. 5	11. 7 9. 2	9. 0 7. 4	18. 2	9. 8 9. 1	2. 3 10. 2	0. 2 8. 2	3.8
23 p H	mg/L	9. 5 7. 4	9. Z 7. 7	7.4	4. 1 7. 2	9. 1 7. 7	7.8	8. 2 7. 3	10. 3 8. 2
24 BOD	mg/L	0.3	0.4	0.3	0, 2	0.8	0. 2	0.1	0.2
25 COD	mg/L	0. 8	1. 2	0. 8	1. 4	1.3	0. 4	0. 1	0. 2
26 S S	mg/L mg/L	6. 4	6. 9	5, 6	11.3	6.0	1. 9	0. 5	2.8
27 大腸菌群数	MPN/100mL	2800	490	79	230	2200	490	230	2300
28 糞便性大腸菌群数	個/100mL	1	4	1 1	<1	2	3	13	120
29 総窒素	mg/L	0. 667	0,606	0.710	0. 627	0. 773	0.514	0, 368	0. 865
30 アンモニウム態窒素	mg/L	-	0.008	0.005	0. 011	0.009	<0.001	<0.001	-
31 亜硝酸態窒素	mg/L	_	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	_
32 硝酸態窒素	mg/L	_	0. 526	0, 583	0, 564	0. 516	0. 511	0, 364	_
33 総リン	mg/L	0. 022	0. 025	0. 024	0.019	0. 038	0. 025	0.021	0. 017
34 オルトリン酸態リン	mg/L	-	0.005	0.008	0.008	0.004	0.017	0.015	-
35 クロロフィルa	mg/m^3	0.1	2. 4	<0.1	<0.1	3.7	<0.1	<0.1	0.1
36 トリハロメタン生成能	mg/L	_	_		_	_	_	_	_
37 2 M I B	ng/1	_	<1	I	_	_		_	1
38 ジェオスミン	ng/l	_	<1	_	_	_	_	_	_
39 フェオフィチンa	mg/m³	_	<0.1	<0.1	<0.1	_	_	_	_
40 溶解性総リン	mg/L	_	0.008	0.010	0.009	0.009	0.020	0.018	_
41 溶解性オルトリン酸態リン	mg/L	_	0.005	0.007	0.005	0.004	0.016	0.014	_
42 電気伝導度	mS/m	7.5	7.5	7.4	7.9	7.6	7.6	7.4	11.6
43 亜鉛	mg/L	0. 002	0.003	0. 002	0.003	0.002	0.001	0.005	0. 001
44 鉄	mg/L	_	0. 398	0. 308	0. 622	_	_		_
45 マンガン	mg/L	0. 031	0.021	0. 020	0. 116		_		_
46 ケイ素	mg/L	_	5. 2	6. 7	7. 0	4. 6	5. 2	6.6	_
47 ケイ素(溶存態)	mg/L	_	4. 3	4. 2	4. 3	4. 4	5. 0	5. 4	_
48 ノニルフェノール	mg/L	_	<0.00006	_	_	_	_		_
49 LAS 濁度の測定方式1・積分F	mg/L		0.0001	_	_	_	_	_	_

(No. 1)

ダム名	浦山ダム	調査年 (西暦)							(No. 1) 2020年
ダムコード	2BH	100		200		201	300	301	2020
i i	2011	ダム放流				貯水池補助			
1 調査地点		(減勢工) 地点		貯水池基準地点		(寄国土) 地点	バイパス取水工	大久保谷	荒川合流点
2 調査月		11		11		11	11	11	11
3 調査日		11		11		11	11	11	11
4 調査開始時刻:時 2	74時間制	9	9	9	9	10	9	10	10
5 調査開始時刻:分	7.4 14 1 1111	00	20	25	35	25	28	45	25
6 天候			20	晴	00	晴	睛	 晴	晴
7 気温	$^{\circ}$ C	9. 7		11. 0		12. 0	8. 9	11. 0	13. 5
8 貯水位	EL. m	_		376, 73		376, 73	— —	_	-
9 流量(河川)	m³/s	_		-		-	_	_	_
10 流入量(貯水池)	m^3/s	_		0.73		0. 73	_	_	_
11 放流量(貯水池)	m^3/s	_		0.73		0. 73	_	_	_
12 透視度(河川)	c m	71	50	50	35	50	>100	>100	92
13 透明度(貯水池)	m	_	•	0.7	-	0.7	_		_
14 水色		_		4		4	_	_	_
15 全水深	m	2. 33		87.00		59.00	0. 25	0.20	0.20
16 採水水深	m	表層	0.5	43.0	86.0	0.5	0.05	0.04	0.13
17 外観		淡白色透	淡灰緑透	淡灰緑透	淡灰緑濁	淡灰緑透	無色透明	無色透明	淡白色透
18 臭気(冷時)		無臭	無臭	無臭	無臭	無臭	無臭	無臭	無臭
19 水温	$^{\circ}$ C	7.5	14. 9	8.6	8.3	15. 0	7. 4	7. 7	8. 5
20 濁度測定方式		1	1	1	1	1	1	1	1
21 濁度	度	7.5	6.6	9.8	12.6	6.6	0. 2	0.2	2.5
22 DO	mg/L	10. 4	9. 1	6.8	4. 0	9. 3	11. 7	11.8	12. 3
23 p H		7. 3	7. 7	7.3	7. 2	7. 7	7.8	7. 7	8. 2
24 BOD	mg/L	<0.1	0. 2	0. 1	0. 1	0. 2	0. 2	0. 2	0. 3
25 COD	mg/L	0.8	0.9	1.0	0.9	0. 9	0.5	0.6	0.8
26 S S	mg/L	3.8	3.3	5. 2	7.3	3. 5	0.3	0.3	1.6
27 大腸菌群数	MPN/100mL	790	2300	790	790	4900	490	170	1100
28 糞便性大腸菌群数	個/100mL	<1	1	<1	1	1	4	<1	3
29 総窒素 30 アンモニウム能窒素	mg/L	0. 538 —	0. 532 0. 005	0. 644 0. 003	0. 559 0. 007	0. 581 0. 003	0. 408 <0. 001	0. 380 0. 003	0. 866 —
31 亜硝酸態窒素	mg/L		<0.003	<0.003	<0.007	<0.003	<0.001	<0.003	_
32 硝酸態窒素	mg/L mg/L		0. 526	0. 588	0. 549	0. 567	0. 395	0.351	_
33 総リン	mg/L mg/L	0.018	0. 023	0. 000	0. 026	0. 007	0. 393	0. 016	0.013
34 オルトリン酸態リン	mg/L mg/L	0.016	0.023	0.025	0.026	0.022	0.017	0.016	0.015
35 クロロフィルa	mg/m ³	0.1	0.010	0.1003	<0.1	1. 2	0. 2	0.612	0.9
36 トリハロメタン生成能	mg/L	_	-	-	-	-	-	-	-
37 2 M I B	ng/1	_	<1	_	_	_	_	_	_
38 ジェオスミン	ng/1	_	<1	_	_	_	_	_	_
39 フェオフィチンa	mg/m³	_	<0.1	<0.1	<0.1	_	_	_	_
40 溶解性総リン	mg/L	_	0.012	0.009	0.013	0.013	0.016	0.015	_
41 溶解性オルトリン酸態リン	mg/L	_	0.009	0.006	0.004	0.008	0.011	0.011	_
42 電気伝導度	mS/m	7.6	7. 5	7.6	8. 1	7.4	8.0	7. 1	11.3
43 亜鉛	mg/L	0.001	0.004	0.002	0.002	0.002	<0.001	<0.001	0.001
44 鉄	mg/L	_	0. 230	0. 259	0.352	_	_	_	_
45 マンガン	mg/L	0.013	0.011	0.013	0.099	_	_	_	_
46 ケイ素	mg/L	_	5. 0	5. 5	4.8	8.3	4. 7	7.3	_
47 ケイ素(溶存態)	mg/L	_	4.6	4. 1	4. 1	4.6	4.6	5. 0	_
48 ノニルフェノール	mg/L	_	<0.00006	-	-	_	_	_	_
49 LAS	mg/L	_	0.0017	_	_	_	_	_	_
濁度の測定方式1:積分対	式/カオリン標	準液							

|<u>濁度の測定方式1:積分球式/カオリン標準液</u> |備考: 1. 調査結果の数値の取扱いについては、貯水池水質調査データ処理マニュアル(案)平成13年12月 水資源開発公団版に従った。 | 2. 表中の一印は測定を行ってない事を示す。 | 3. 貯水位、流量等は日平均値を記載した。

(No. 1

2020年 ダム名 浦山ダム 調査年 (西暦) ダムコード 2BH 100 200 201 300 301 ダム放流 貯水池補助 調査地点 貯水池基準地点 バイパス取水工 大久保谷 荒川合流点 (減勢工) 地点 (寄国土) 地点 2 調査月 12 12 12 12 12 12 3 調査日 2 2 2 2 2 調香開始時刻:時 24時間制 9 10 8 9 9 9 10 10 調查開始時刻:分 51 20 30 50 05 25 20 33 6 天候 曇 曇 曇 曇 曇 曇 7 気温 $^{\circ}$ C 4.8 6.5 7.2 5.0 7.0 5.8 貯水位 8 EL. m 377.27 377.27 9 流量(河川) m^3/s 0.81 10 流入量(貯水池) _ 0.81 _ m^3/s 11 放流量(貯水池) m^3/s 0.72 0.72 _ 12 透視度(河川) 78 70 50 80 >100 c m 40 >100 >100 13 透明度(貯水池) 0.9 0.8 m _ 14 水色 4 4 15 全水深 2, 52 91.00 60.00 0.38 0.24 0.28 m 16 採水水深 m 表層 0. 5 45. 5 90.0 0. 5 0.07 0.04 0.05 17 外観 淡白透 炎灰緑透 淡灰緑透 炎灰緑濁 炎灰緑透 無色透明 無色透明 無色透明 18 臭気(冷時) 無臭 無臭 無臭 無臭 無臭 19 水温 $^{\circ}$ C 7.0 13.2 10.0 8.3 13. 2 5.6 6.5 6.4 20 濁度測定方式 1 1 21 濁度 22 DO 23 pH 度 7.5 6.6 9. 5 13.8 6.3 0.20.1 2.5 mg/L 10.1 9.6 7.3 3.8 9.7 12.0 12. 2 12.8 7.2 7.6 7.3 7.2 7.7 7.8 7.7 7.8 24 BOD 0.2 0.4 0.4 0.20.4 0.2 0.3 0.3 mg/L 25 COD 0. 9 0. 6 0. 8 0. 9 0.7 0.9 0.5 0.4 mg/L 26 S S 3. 5 4.0 6.0 6. 9 3. 9 0.6 <0.1 mg/L 1.1 MPN/100mI 27 大腸菌群数 140 490 49 280 490 79 130 490 28 糞便性大腸菌群数 個/100mL 1 <1 <1 <1 <1 <1 6 29 総窒素 0.666 0.775 0.610 0.688 0.536 0.500 0.351 0.926 mg/I 30 アンモニウム熊窒素 0.005 0.003 <0.001 0.004 < 0.001 <0.001 mg/L _ _ 31 亜硝酸態窒素 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 _ _ mg/L 32 硝酸態窒素 0.568 0.558 0.393 0.325 mg/L 0.603 0.516 33 総リン mg/L 0.015 0.041 0.027 0.021 0.0240.013 0.012 0.008 34 オルトリン酸態リン mg/L 0.009 0.009 0.002 0.015 0.012 0.010 クロロフィルa 0.1 0.5 0.1 <0.1 0.8 0.1 0.3 0.6 mg/m³ 36 トリハロメタン生成能 mg/L 37 2 M I B _ <1 _ _ ng/1 _ 38 ジェオスミン ng/1 _ <1 _ _ _ 39 フェオフィチンa <0.1 <0.1 <0.1 mg/m³ _ _ _ 40 溶解性総リン 0.013 0.013 0.004 0.016 0.013 0.012 mg/L _ _ 41 溶解性オルトリン酸熊リン 0.007 0.006 0.002 0.010 0.010 0.007 _ _ mg/L 42 電気伝導度 mS/m 7.7 7.5 7.7 8.3 7.5 8.5 7.5 12.2 43 亜鉛 0.001 0.002 0.003 0.003 0.002 <0.001 <0.001 <0.001 mg/I 44 鉄 0.229 0.327 0.369 mg/I 45 マンガン 0.012 mg/I 0.016 0.023 0.115 46 ケイ素 6.7 5. 2 5. 4 8.9 15 6. 9 _ _ mg/I 47 ケイ素(溶存態) 5. 2 4.7 4.3 2.4 4.7 5.5 mg/I 48 ノニルフェノール <0.00006 _ mg/L _ _ _ 49 I 0.0004 LAS _

構考: 1. 調査結果の数値の取扱いについては、貯水池水質調査データ処理マニュアル(案)平成13年12月 水資源開発公団版に従った。

2. 表中の一印は測定を行ってない事を示す。

3. 貯水位、流量等は日平均値を記載した。

|濁度の測定方式1:積分球式/カオリン標準液